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Abstract

When one is conscious of something, one is also conscious that one is conscious. Higher-Order Thought Theory [Rosenthal, D. (1997). A
theory of consciousness. In N. Block, O. Flanagan, & G. Güzeldere (Eds.), The nature of consciousness: Philosophical debates. Cambridge, MA:
MIT Press] takes it that it is in virtue of the fact that one is conscious of being conscious, that one is conscious. Here, we ask what the computational
mechanisms may be that implement this intuition. Our starting point is Clark and Karmiloff-Smith’s [Clark, A., & Karmiloff-Smith, A. (1993).
The cognizer’s innards: A psychological and philosophical perspective on the development of thought. Mind and Language, 8, 487–519] point
that knowledge acquired by a connectionist network always remains “knowledge in the network rather than knowledge for the network”. That is,
while connectionist networks may become exquisitely sensitive to regularities contained in their input–output environment, they never exhibit the
ability to access and manipulate this knowledge as knowledge: The knowledge can only be expressed through performing the task upon which the
network was trained; it remains forever embedded in the causal pathways that developed as a result of training. To address this issue, we present
simulations in which two networks interact. The states of a first-order network trained to perform a simple categorization task become input to
a second-order network trained either as an encoder or on another categorization task. Thus, the second-order network “observes” the states of
the first-order network and has, in the first case, to reproduce these states on its output units, and in the second case, to use the states as cues in
order to solve the secondary task. This implements a limited form of metarepresentation, to the extent that the second-order network’s internal
representations become re-representations of the first-order network’s internal states. We conclude that this mechanism provides the beginnings
of a computational mechanism to account for mental attitudes, that is, an understanding by a cognitive system of the manner in which its first-
order knowledge is held (belief, hope, fear, etc.). Consciousness, in this light, thus involves knowledge of the geography of one own’s internal
representations — a geography that is itself learned over time as a result of an agent’s attributing value to the various experiences it enjoys through
interaction with itself, the world, and others.
c� 2007 Elsevier Ltd. All rights reserved.
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As abundantly demonstrated not only by empirical evidence
but also by the very fact that extremely powerful information-
processing machines, namely, computers, have now become
ubiquitous, information processing can undoubtedly take place
without consciousness. Only but a few would be willing to
grant any quantum of conscious experience to contemporary
computers, yet they are undeniably capable of sophisticated
information processing — from recognizing faces to analyzing
speech, from winning chess tournaments to helping prove
theorems. Likewise, it is hard to discern anything intrinsic to
neural activity that mandates that such activity be associated
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to or produce conscious experience. Thus, consciousness is
not information processing tout court; experience is an “extra
ingredient” (Chalmers, 2007) that comes over and beyond mere
computation.

With this premise in mind (a premise that just restates
Chalmers’ hard problem, that is, the question of why it is the
case that information processing is accompanied by experience
in humans and other higher animals), there are several ways in
which one can think about the problem of consciousness.

One is to simply state, as per Dennett (e.g., Dennett (1991,
2001)) that there is nothing more to explain. Experience is
just (a specific kind of) information processing in the brain;
the contents of experience are just whatever representations
have come to dominate processing at some point in time
(“fame in the brain”); consciousness is just a harmless
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illusion. From this perspective, it is easy to imagine that
machines will be conscious when they have accrued sufficient
complexity; the reason they are not conscious now is simply
because they are not sophisticated enough: They lack the
appropriate architecture perhaps, they lack sufficiently broad
and diverse information processing abilities, and so on.
Regardless of what is missing, the basic point here is
that, contra Chalmers, there is no reason to assume that
conscious experience is anything special. Instead, all that
is required is one or several yet-to-be-identified functional
mechanisms: Recurrence, perhaps (Lamme, 2003), stability
of representation (O’Brien & Opie, 1999), global availability
(Baars, 1988; Dehaene, Kerszberg, & Changeux, 1998),
integration and differentiation of information (Tononi, 2003),
or the involvement of higher-order representations (Rosenthal,
1997), to name just a few (see Atkinson, Thomas, and
Cleeremans (2000), Maia and Cleeremans (2005), for reviews).

Let us try to engage in some phenomenological analysis
at this point in an attempt to capture what it means for each
of us to have an experience. Imagine you see a patch of
red (Humphrey, 2006). You now have a red experience —
something that a camera recording the same patch of red will
most definitely not have. What is the difference between you
and the camera? Tononi (2007), from whom I borrow this
simple thought experiment, points out that one key difference is
that when you see the patch of red, the state you find yourself in
is but one among billions, whereas for a simple light-sensitive
device, it is perhaps one of only two possible states — thus the
state conveys a lot more differentiated information for you than
for a light-sensitive diode. A further difference is that you are
able to integrate the information conveyed by many different
inputs, whereas the chip of a camera can be thought of as a
mere array of independent sensors among which there is no
interaction.

Both Chalmers’ (somewhat paradoxically) and Tononi’s
analyses, however, describe conscious experience as a rather
abstract dimension or aspect of information, whereas our
intuition is that what it feels like is anything but abstract. On
the contrary, what we mean when we say that seeing a patch of
red elicits an “experience” is that the seeing does something to

us — in particular, we might feel one or several emotions, and
we may associate the redness with memories of red. Perhaps
seeing the patch of red makes you remember the color of the
dress that your prom night date wore 20 years ago. Perhaps it
evokes a vague anxiety, which we now know is also shared by
monkeys (Humphrey, 1971). To a synaesthete, perhaps seeing
the color red will evoke the number 5. The point is that if
conscious experience is what it feels like to be in a certain
state, then “What it feels like” can only mean the specific
set of associations that have been established by experience
between the stimulus or the situation you now find yourself
in, on the one hand, and your memories, on the other. This
is what one means by saying that there is something it is like
to be you in this state rather than nobody or somebody else:
The set of memories evoked by the stimulus (or by actions
you perform, etc.), and, crucially, the set of emotional states
associated with each of these memories. It is interesting to

note that Indian philosophical traditions have placed similar
emphasis on the role that emotion plays in shaping conscious
experience (Banerjee, 2007).

Hence, a first point about what we mean by “experience”
is that there is nothing it is like for the camera to see the
patch of red simply because it does not care: The stimulus is
meaningless; the camera lacks even the most basic machinery
that would make it possible to ascribe any interpretation to the
patch of red; it is instead just a mere recording device for which
nothing matters. There is nothing it is like to be that camera at
that point in time simply because (1) the experience of different
colors does not do anything to the camera; that is, colors are
not associated with different emotional valences; and (2) the
camera has no brain with which to register and process its own
states. It is easy to imagine how this could be different. To
hint at my forthcoming argument, a camera could, for instance,
keep a record of the colors it is exposed to, and come to “like”
some colors better than others. Over time, your camera would
like different colors than mine, and it would also know that
in some non-trivial sense. Appropriating one’s mental contents
for oneself is the beginning of individuation, and hence the
beginning of a self.

A second point about experience that we perceive as
crucially important is that it does not make any sense to speak
of experience without an experiencer who experiences the
experiences. Experience is, almost by definition (“what it feels
like”), something that takes place not in any physical entity but
rather only in special physical entities, namely cognitive agents.
Chalmers’ thermostat (Chalmers, 1996) fails to be conscious
because, despite the fact that it can find itself in different
internal states, it lacks the ability to remove itself from the
causal chain in which it is embedded. In other words, it lacks
knowledge that it can find itself in different states. While there
is indeed something to be experienced there (the different states
the thermostat can find itself in), there is no one home to be the
subject of these experiences — the thermostat simply lacks the
appropriate machinery to do so.

This point can be illustrated by means of well-known results
in the connectionist, or artificial neural network modelling
literature. Consider for instance Hinton’s (1986) famous
demonstration that a simple back-propagation network can
learn about abstract dimensions of the training set. Hinton’s
network was a relatively simple back-propagation network
trained to process linguistic expressions consisting of an agent,
a relationship, and a patient, such as for instance “Maria is
the wife of Roberto”. The stimulus material consisted of a
series of such expressions, which together described some of
the relationships that exist in the family trees of an Italian
family and of an English family. The network was required to
produce the patient of each agent–relationship pair it was given
as input. For instance, the network should produce “Roberto”
when presented with “Maria” and “wife”. Crucially, each
person and each relationship were presented to the network
by activating a single input unit. Hence there was no overlap
whatsoever between the input representations of, say, Maria
and Victoria. Yet, despite this complete absence of surface
similarity between training exemplars, Hinton showed that,
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after training, the network could, under certain conditions,
develop internal representations that capture relevant abstract
dimensions of the domain, such as nationality, sex, or age!

Hinton’s point was to demonstrate that such networks were
capable of learning richly structured internal representations as
a result of merely being required to process exemplars of the
domain. Crucially, the structure of the internal representations
learned by the network is determined by the manner in
which different exemplars interact with each other, that is, by
their functional similarity, rather than by their mere physical

similarity expressed, for instance, in terms of how many
features (input units) they share. Hinton thus provided a striking
demonstration of this important and often misunderstood aspect
of associative learning procedures by showing that under some
circumstances, specific hidden units of the network had come
to act as detectors for dimensions of the material that had never
been presented explicitly to the network. These results truly
flesh out the notion that rich, abstract knowledge can simply
emerge as a by-product of processing structured domains. It
is interesting to note that the existence of such single-unit
“detectors” has recently been shown to exist in the human
neocortex (Kreiman, Fried, & Koch, 2002): Single-neuron
recording of activity in the hippocampus, for instance, has
shown that some individual neurons exclusively respond to
highly abstract entities, such as the words “Bill Clinton” and
images of the American president.

Now, the point we want to make with this example is
as follows: One could certainly describe the network as
being aware of nationality, in the sense that it is sensitive
to the concept: It exhibits differential responding (hence,
behavioural sensitivity) to inputs that involve Italian agents
vs. English agents. But, obviously, the network does not know

anything about nationality. It does not even know that it
has such and such representations of the inputs, nor does
it know anything about its own, self-acquired sensitivity or
awareness of the relevant dimensions. Instead, the rich, abstract,
structured representations that the network has acquired over
training forever remain embedded in a causal chain that begins
with the input and ends with the network’s responses. As
Clark and Karmiloff-Smith (1993) insightfully pointed out,
such representations are “first-order” representations to the
extent that they are representations in the system rather than
representations for the system; that is, such representations are
not accessible to the network as representations.

In this context, what would it take for a network like
Hinton’s to be able to access its own representations; and what
difference would that make with respect to consciousness?

To answer the first question, the required machinery is
the machinery of agenthood; in a nutshell, the ability to do
something not just with external states of affairs, but rather
with one own’s representations of such external states. This
crucially requires that the agent be able to access, inspect,
and otherwise manipulate its own representations, and this in
turn, I surmise, requires mechanisms that make it possible for
an agent to redescribe its own representations to itself. The
outcome of this continuous “representational redescription”
(Karmiloff-Smith, 1992) process is that the agent ends up

knowing something about the geography of its own internal
states: It has, in effect, learned about its own representations.
Minimally, this could be achieved rather simply, for instance by
having another network take both the input (i.e., the external
stimulus as represented proximally) to the first-order network
and its internal representations of that stimulus as inputs
themselves and do something with them.

One elementary thing the system consisting of the two
interconnected networks (the first-order, observed network and
the second-order, observing network) would now be able to do
is to make decisions, for instance, about the extent to which
an external input to the first-order network elicits a familiar
pattern of activation over its hidden units or not. This would
in turn enable the system to come up with judgments about the
performance of the first-order network (Dienes, 2007; Persaud,
McLeod, & Cowey, 2007). This is just what we propose below
in a preliminary set of simulations.

To address the second question (what difference would
representational redescription make in terms of consciousness),
if you think this is starting to sound like a higher-order
thought theory of consciousness (Rosenthal, 1997), you may
be right: Higher-order representations (which we will call
metarepresentations in what follows) play a crucial role in
consciousness.

An immediate objection to this idea is as follows: If there
is nothing intrinsic to the existence of a representation in
a cognitive system that makes this representation conscious,
why should things be different for metarepresentations? After
all, metarepresentations are representations also. Yes indeed,
but with a crucial difference: Metarepresentations inform the
agent about its own internal states, making it possible for
it to develop an understanding of its own workings. And
this, we argue, forms the basis for the contents of conscious
experience, provided of course – which cannot be the case in
any contemporary artificial system – that the system has learned
about its representations by itself, over its development, and
provided that it cares about what happens to it, that is, provided
its behaviour is rooted in emotion-laden motivation (to survive,
to mate, to find food, etc.).

1. The radical plasticity thesis

We would thus like to defend the following claim: Conscious
experience occurs if and only if an information processing
system has learned about its own representations of the world.
To put this claim even more provocatively: Consciousness
is the brain’s theory about itself, gained through experience
interacting with the world, others, and, crucially, with itself. We
call this claim the “Radical Plasticity Thesis”, for its core is the
notion that learning is what makes us conscious. How so? The
short answer, as hinted above, is that consciousness involves
not only knowledge about the world, but, crucially, knowledge
about our own internal states, or mental representations.

In the following, we describe some preliminary simulation
work aimed at capturing these intuitions about the possible role
that metarepresentations may play in shaping consciousness.
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Fig. 1. Architecture of the first network, in which the higher-order network
serves as an encoder of the hidden unit patterns of the first-order network.

2. Simulations: The digits problem

We illustrate two ways in which metarepresentations can
be operationalized and what this might teach us about
consciousness. Both simulations involve a first-order network
that has to perform a simple task such as digit recognition,
and a higher-order network that “observes” the internal states
of the first-order network. This second network is thus wholly
independent from the causal chain set up by the first-order
network.

In the first simulation the higher-order network is simply
trained to act as an encoder of the first-order internal states.
It learns to reproduce the state of the entire first-order network
based on that network’s hidden unit patterns.

In the second simulation the higher-order network is given
the more complex task of evaluating the first-order network’s
performance by wagering. In other words, it has to distinguish
between “correct” and “wrong” internal states of the first-order
network.

2.1. Higher-order encoding of first-order internal states

For the first simulations, we constructed a first-order
feedforward backpropagation network consisting of 20 input
units representing digit shapes, 5 hidden units, and 10 output
units representing the 10 digits. Immediately following each
presentation the hidden unit activation pattern was copied onto
the 5 input units of the higher-order feedforward network,
connected to either 10 or 5 hidden units, in turn connected to
the 35 output units that corresponded to the number of units in
the entire first-order network, as shown in Fig. 1.

One epoch consisted of presentation of all 10 digits. For each
of both architectures (higher-order network with 10 or 5 hidden
units, identical first-order networks) we trained 5 networks over
1000 epochs with a learning rate of .1 and a momentum of .9,

Fig. 2. Error proportion (see text for details) for the first-order network and for
both higher-order networks (10 and 5 hidden units).

measuring the error proportion (defined, for a particular epoch
of training, as the magnitude of RMS output error for that epoch
divided by the maximum output error, i.e. output error prior to
any training) separately across the output units of the first-order
and the higher-order network. Results are shown in Fig. 2 and
show comparable learning curves for both architectures.

We can see that initially the first-order network learns at
a faster rate than the higher-order network. However, after
50–100 epochs the higher-order network becomes actually
better at predicting the entire state of the first-order network
based on its hidden unit patterns than the first-order network
is at predicting the correct digit from the input pattern.
This difference decreases gradually, and for the higher-order
network with 5 hidden units we can see that eventually
the first-order network again outperforms the higher-order
network. This suggests that as soon as some activation stability
is achieved in the first-order network’s hidden units, these
patterns, even though they do not yet permit the first-order
network itself to optimize its performance beyond an error
proportion of .40, become available to a higher-order network
that is able to extract from these hidden units information about
the overall state of the first-order network, — information that
is in itself not available to that first-order network.

In terms of awareness, this would mean that at some
point during the early stages of learning, some aspects of
the learned knowledge become available as targets of higher-
order representations. In other words, whereas initially unstable
first-order knowledge makes it impossible for the higher-order
network to consistently learn about them, this changes with
training in such a manner that once first-order representations
have become sufficiently stable, the higher-order network can
then use the structure that they contain so as to improve its own
ability to reconstruct the input and the output of the first-order
network successfully.

In the next simulation study, we will explore how a higher-
order network can make use of this capacity to re-represent
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Fig. 3. Architecture of the second network, in which the higher-order networks
classifies the hidden unit patterns of the first-order network.

first-order internal states so as to perform a different task,
namely, evaluating the performance of the first-order network.

2.2. Higher-order classification of first-order internal states: A

wagering network

Recently, Persaud et al. (2007) introduced wagering as a
measure of awareness, where participants are required to place
a high or a low wager on their decision, such as relative
to stimulus identification for example. The intuition behind
this measure is that people will place a high wager when
they have conscious knowledge about the reasons for their
decisions, and a low wager when they are uncertain of their
decisions. In this, wagering is thus similar to other subjective
measures of awareness (Dienes, 2004; Gaillard, Vandenberghe,
Destrebecqz, & Cleeremans, 2006). According to Persaud
et al., wagering provides an incentive for participants not
to withhold any conscious information, as well as not to
guess, making it a more objective measure of awareness than
confidence judgment. Despite recent criticism of Persaud et al.
’s claims (Seth, 2007), wagering certainly reflects the extent
to which an agent is sensitive to its own internal states. This
may perhaps be captured by training a higher-order network to
use first-order information so as to evaluate the performance of
the latter. We therefore aimed at creating a wagering network.
For this simulation, the first-order feedforward backpropagation
network consisted of 7 input units representing digit shapes (as
on a digital watch), 100 hidden units, and 10 output units for
the 10 digits. The 100 first-order hidden units connected to a
different pool of 100 hidden units of a higher-order feedforward
network, with 2 output units representing a high and a low
wager, as shown in Fig. 3.

A learning rate of .15 and a momentum of .5 were used
during training of the first-order network. However, in a first
condition of high awareness, the second network was trained
with a learning rate of .1, and in a second condition of low

awareness, a learning rate of 10−7 was applied. The task of the
higher-order network consisted of wagering high if it “thought”
that the first-order network was providing a correct answer
(correct identification of the digit), and to wager low in case
the first network gave a wrong answer (misidentification of the
digit). Fig. 4 displays the average error curves of 10 networks
throughout 200 epochs of training.

Fig. 4. Error proportion (see text for details) for the first-order network and
for both higher-order networks (“high and low consciousness”, reflected by
using .1 and 10−7 learning rates).

Despite the gradual learning exhibited by the first-order
network, error in wagering increases during the 40 first epochs
in both conditions of high and low awareness. Only from the
40th epoch onwards does the higher-order network start to
improve the quality of its wagering.

In order to understand the reason for this initial increase,
we need to evaluate the networks’ performance through an
analysis of the recognition rate for the first-order network, and
of the wagering strategy for the higher-order network. The first-
order network’s performance is represented by the percentage
of correct identification (the chance level is at .1 since 10
digits are available). Wagering strategy is considered good
if the network wagered high in case of correct identification
and low in case of misrepresentation. Conversely, the strategy
is considered to be poor if a high wager accompanies a
incorrect classification, or when a correct identification was
only associated to a low wager. As the strategy has the same
probability of being good or bad, the chance level is at 50%.
The results of this analysis are shown in Fig. 5.

As shown in Fig. 5, the previously identified error extremum
at the 40th epoch corresponds in fact to a chance level wagering
performance. Further analysis revealed that the higher-order
networks mainly used a low-wagering strategy during the first
epochs, during which the first-order network is misclassifying
most of the digits, whereas is develops a high-wagering strategy
at a later stage in learning, when first-order identification
becomes progressively more accurate. Thus the error extremum
observed in Fig. 5 characterizes the higher-order network’s
“most doubtful moment” when identification is correct only
50% of the time and no strategy can be applied. One could
view this as the moment at which the higher-order network
abandons a simple “safe” strategy of low wagers and explores
the space of first-order hidden unit representations, looking for
a criterion or a categorization that will allow it to separate
correct identifications from wrong identifications.
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Fig. 5. Performance of the first-order network in terms of correct
identifications, and of the higher-order networks in terms of advantageous
wagers (high wagers when the first-order network is correct and low wagers
when it is wrong).

3. Metarepresentation

The simulations sketched above illustrate how a network can
be trained to observe the internal states of another network
in such a manner that it can use this information to perform
tasks that require knowledge of the structure of these internal
states — either to reconstruct the corresponding inputs and
outputs, or to actually evaluate the extent to which these
internal representations will result in successful performance.
In both cases, it is interesting to note that while the higher-
order, observing network initially performs poorly, it quickly
learns enough about the structure of the first-order internal
representations to become more accurate in performing its own
task. This captures the processes involved in the development
of expertise, whereby learning might initially take place in an
essentially implicit manner, and be subsequently followed by a
period where explicit knowledge becomes available (Bechara,
Damasio, Tranel, & Damasio, 1997; Bierman, Destrebecqz,
& Cleeremans, 2005; Cleeremans, 2005, 2006; Cleeremans,
Destrebecqz, & Boyer, 1998). Automaticity (Shiffrin &
Schneider, 1977) would correspond to a third period in
skill learning where the acquired metarepresentations become
optional or otherwise detached from first-order representations.

What are the conditions under which metarepresentations
emerge? Strong, stable, and distinctive representations as they
occur in trained neural networks are explicit representations,
at least in the sense put forward by Koch (2004): They indi-
cate what they stand for in such a manner that their reference
can be retrieved directly through processes involving low com-
putational complexity (see also Kirsh (1991, 2003)). Conscious
representations, in this sense, are explicit representations that
have come to play, through processes of learning, adaptation,
and evolution, the functional role of denoting a particular con-
tent for a cognitive system.

Once a representation has accrued sufficient strength,
stability, and distinctiveness, it may be the target of
metarepresentations: The system may then “realize”, if it is
so capable, that is, if it is equipped with the mechanisms
that are necessary to support self-inspection, which here takes
the form of an “observer” network, that it has learned a
novel partition of the input; that it now possesses a new
“detector” that only fires when a particular kind of stimulus, or
a particular condition, is present. Humphrey (2006) emphasizes
the same point when he states that “This self-monitoring
by the subject of his own response is the prototype of the
‘feeling sensation’ as we humans know it” (p. 90). Importantly,
our claim here is that such metarepresentations are learned
in just the same way as first-order representations, that is,
in virtue of continuously operating learning mechanisms.
Because metarepresentations are also representations, the
same principles that make first-order representations explicit
therefore apply. An important implication of this observation
is that activation of metarepresentations can become automatic,
just as it is the case for first-order representations.

What might be the function of such metarepresentations?
One intriguing possibility is that their function is to indicate
the mental attitude through which a first-order representation
is held: Is this something I know, hope, fear or regret?
Possessing such metaknowledge about one’s knowledge has
obvious adaptive advantages, not only with respect to the
agent himself, but also because of the important role that
communicating such mental attitudes to others plays in
both competitive and cooperative social environments. In the
simulations we have described, metarepresentations as they
occur in the second-order network take the more limited role
of indicating relationships between internal representations and
the input–output representations.

However, there is another important function that metarep-
resentations may play: They can also be used to anticipate the
future occurrences of first-order representations. Thus, for in-
stance, if my brain learns that SMA (Supplementary Motor
Area) is systematically active before M1 (Primary Motor Cor-
tex), then it can use SMA representations to explicitly represent
their consequences downstream, that is, M1 activation, and ul-
timately, action. If neurons in SMA systematically become ac-
tive before an action is carried out, a metarepresentation can
link the two and represent this fact explicitly in a manner that
will be experienced as intention. That is: When neurons in the
SMA become active, I experience the feeling of intention be-

cause my brain has learned, unconsciously, that such activity
in SMA precedes action. It is this knowledge that gives quali-
tative character to experience, for, as a result of learning, each
stimulus that I see, hear, feel, or smell is now not only repre-
sented, but also re-represented through metarepresentations that
enrich and augment the original representation(s) with knowl-
edge about (1) how similar the manner in which the stimulus’
representation is with respect to that associated with other stim-
uli, (2) how similar the stimulus’ representation is now with
respect to what it was before, (3) how consistent is a stimu-
lus’ representation with what it typically is, (4) what other re-
gions of my brain are active at the same time that the stimulus’
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representation is, etc. This perspective is akin to the sensori-
motor perspective (O’Regan & Noë, 2001) in the sense that
awareness is linked with knowledge of the consequences of our
actions, but, crucially, the argument is extended to the entire
domain of neural representations.

4. Conclusion

Thus we end with the following idea, which is the heart
of the “Radical Plasticity Thesis”: The brain continuously
and unconsciously learns not only about the external world,
but about its own representations of it. The result of this
unconscious learning is conscious experience, in virtue of
the fact that each representational state is now accompanied
by (unconsciously learnt) metarepresentations that convey the
mental attitude with which these first-order representations
are held. Thus, from this perspective, there is nothing
intrinsic to neural activity, or to information per se, that
makes it conscious. Conscious experience involves specific
mechanisms through which particular (i.e., stable, strong,
and distinctive) unconscious neural states become the target
of further processing, which we surmise involves some
form of representational redescription in the sense described
by Karmiloff-Smith (1992). These ideas are congruent both
with higher-order theories in general (Dienes, 2007; Dienes
& Perner, 1999; Rosenthal, 1997), but also with those of Lau
(2007), who characterizes consciousness as “signal detection
on the mind”. The simulation work we have sketched here is
a first step in implementing these ideas in the form of actual
computational principles.
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Persaud, N., McLeod, P., & Cowey, A. (2007). Post-decision wagering

objectively measures awareness. Nature Neuroscience, 10, 257–261.

Rosenthal, D. (1997). A theory of consciousness. In N. Block, O. Flanagan, &
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