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Learning the Structure of Event Sequences 
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How is complex sequential material acquired, processed, and represented when there is no 
intention to learn? Two experiments exploring a choice reaction time task are reported. Unknown 
to Ss, successive stimuli followed a sequence derived from a "noisy" finite-state grammar. After 
considerable practice (60,000 exposures) with Experiment 1, Ss acquired a complex body of 
procedural knowledge about the sequential structure of the material. Experiment 2 was an 
attempt to identify limits on Ss ability to encode the temporal context by using more distant 
contingencies that spanned irrelevant material. Taken together, the results indicate that Ss 
become increasingly sensitive to the temporal context set by previous elements of the sequence, 
up to 3 elements. Responses are also affected by priming effects from recent trials. A connectionist 
model that incorporates sensitivity to the sequential structure and to priming effects is shown to 
capture key aspects of both acquisition and processing and to account for the interaction between 
attention and sequence structure reported by Cohen, Ivry, and Keele (1990). 

In many situations, learning does not proceed in the explicit 
and goal-directed way characteristic of traditional models of 
cognition (Newell & Simon, 1972). Rather, it appears that a 
good deal of  our knowledge and skills are acquired in an 
incidental and unintentional manner. The evidence support- 
ing this claim is overwhelming: In his recent review article, 
Reber (1989) analyzes about 40 empirical studies that docu- 
ment the existence of learning processes that do not necessar- 
ily entail awareness of the resulting knowledge or of  the 
learning experience itself. At least three different "implicit 
learning" paradigms have yielded robust and consistent re- 
sults: artificial grammar learning (Dulany, Carlson, & Dewey, 
1984; Mathews et al., 1989; Reber, 1967, 1989; Servan- 
Schreiber & Anderson, 1990), system control (Berry & 
Broadbent, 1984; Hayes & Broadbent, 1988), and sequential 
pattern acquisition (Cohen, Ivry, & Keele, 1990; Lewicki, 
Czyzewska, & Hoffman, 1987; Lewicki, Hill, & Bizot, 1988; 
Nissen & Bullemer, 1987; Willingham, Nissen, & Bullemer, 
1989). The classic result in these experimental situations is 
that "subjects are able to acquire specific procedural knowl- 
edge (i.e., processing rules) not only without being able to 
articulate what they have learned, but even without being 
aware that they had learned anything" (Lewicki et al., 1987, 
p. 523). Related research with neurologically impaired 
patients (see Schacter, 1987, for a review) also provides strong 
evidence for the existence of a functional dissociation between 
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explicit memory (conscious recollection)and implicit memory 
(a facilitation of performance without conscious recollection). 

Despite this wealth of evidence documenting implicit learn- 
ing, few models of the mechanisms involved have been pro- 
posed. Reber's (1989) analysis of the field, for instance, leaves 
one with the impression that little has been done beyond 
mere demonstrations of existence. This lack of formalization 
can doubtless be attributed to the difficulty of assessing sub- 
jects' knowledge when it does not lend itself easily to verbali- 
zation. Indeed, although concept formation or traditional 
induction studies can benefit from experimental procedures 
that reveal the organization of subjects' knowledge and the 
strategies they use, such procedures often appear to disrupt or 
alter the very processes they are supposed to investigate in 
implicit learning situations (see Dulany et al., 1984; Dulany, 
Carlson, and Dewey, 1985; Reber, Allen, & Regan, 1985, for 
a discussion of this point). Thus, research on implicit learning 
has typically focused more on documenting the conditions 
under which one might expect the phenomenon to manifest 
itself than on obtaining the fine-grained data needed to elab- 
orate information-processing models. 

Nevertheless, a detailed understanding of such learning 
processes seems to be an essential preliminary step toward 
developing insights into the central questions raised by recent 
research, such as the relationship between task performance 
and "verbalizable" knowledge, the role that attention plays in 
unintentional learning, or the complex interactions between 
conscious thought and the many other functions of the cog- 
nitive system. Such efforts at building simulation models of 
implicit learning mechanisms in specific experimental situa- 
tions are already underway. For instance, Servan-Schreiber 
and Anderson (1990) and Matbews et al. (1989) have both 
developed models of the Reber task that successfully account 
for key aspects of learning and classification performance. 

In this article, we explore performance in a different exper- 
imental situation, which has recently attracted increased at- 
tention as a paradigm for studying unintentional learning: 
sequential pattern acquisition. We report on two experiments, 
which investigate sequence learning in a novel way that allows 
detailed data on subjects' sequential expectations to be ob- 
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tained, and explore an information-processing model of the 
task. 

Sequence Learning 

An increasingly large number of empirical studies have 
begun to explore the conditions under which one might expect 
subjects to display sensitivity to sequential structure despite 
limited ability to verbalize their knowledge. Most of these 
studies have used a choice reaction time paradigm. Thus, 
Lewicki et al. (1988) used a four-choice reaction time (RT) 
task during which the stimulus could appear in one of four 
quadrants of a computer screen on any trial. Unknown to 
subjects, the sequential structure of the material was manip- 
ulated by generating sequences of 5 elements according to a 
set of simple rules. Each rule defined where the next stimulus 
could appear as a function of the locations at which the two 
previous stimuli had appeared. As the set of sequences was 
randomized, the first 2 elements of each sequence were un- 
predictable. By contrast, the last 3 elements of each sequence 
were determined by their predecessors. Lewicki et al. (1988) 
hypothesized that this difference would be reflected in re- 
sponse latencies to the extent that subjects are using the 
sequential structure to respond to successive stimuli. The 
results confirmed the hypothesis: A progressively widening 
difference between the number of fast and accurate responses 
elicited by predictable and unpredictable trials emerged with 
practice. Furthermore, subjects were exposed to a different 
set of sequences in a later part of the experiment. These 
sequences were constructed using the same transition rules, 
but applied in a different order. Any knowledge about the 
sequential structure of the material acquired in the first part 
of the experiment thus became suddenly useless, and a sharp 
increase in response latency was expected. The results were 
consistent with this prediction. Yet, when asked after the task, 
subjects failed to report having noticed any pattern in the 
sequence of exposures, and none of them even suspected that 
the sequential structure of the material had been manipulated. 

Obviously, repeated exposure to structured material elicits 
performance improvements that depend specifically on the 
fact that the material is structured (as opposed to general 
practice effects). Similar results have been described in differ- 
ent tasks. For instance, Miller (1958) reported higher levels of 
free recall performance for structured strings over random 
strings. Hebb (1961) reported an advantage for repeated 
strings over nonrepeated strings in a recall task, even though 
subjects were not aware of the repetitive nature of the material. 
Pew (1974) found that tracking performance was better for a 
target that followed a consistent trajectory than for a random 
target. Again, subjects were unaware of the manipulation and 
failed to report noticing any pattern. More recently, Lewicki 
et al. (1987) reported improved performance in a search task 
when combinations of trials as remote as six steps contained 
information about the location of the target. Other subjects 
given as much time as they wished to identify the crucial 
information failed in doing so, thereby suggesting that the 
relevant patterns were almost impossible to detect explicitly. 

However, lack of awareness, or inability to recall the ma- 
terial, does not necessarily entail that these tasks require no 

attentional capacity. Nissen and Bullemer (1987) demon- 
strated that a task similar to that used by Lewicki et al. (1988) 
failed to elicit performance improvements with practice when 
a memory-intensive secondary task was performed concur- 
rently. More recently, A. Cohen et al. (1990) refined this result 
by showing that the ability to learn sequential material under 
attentional distraction interacts with sequence complexity. 
Only sequences composed entirely of ambiguous elements 
(i.e., elements that cannot be predicted solely on the basis of 
their immediate predecessor) are difficult to learn when a 
secondary task is present. 

To sum up, there is clear evidence that subjects acquire 
specific procedural knowledge when exposed to structured 
material. When the material is sequential, this knowledge is 
about the temporal contingencies between sequence elements. 
Furthermore, it appears that the learning processes underlying 
performance in sequential choice reaction experiments do not 
entail or require awareness of the relevant contingencies, 
although attention is needed to learn even moderately com- 
plex material. Several important questions, however, remain 
unanswered. 

First, it is not clear how sensitivity to the temporal context 
develops over time. How do responses to specific sequence 
elements vary with practice? Does sensitivity to more or less 
distant contingencies develop in parallel, or in stages, with 
the shortest contingencies being encoded earlier than the 
longer ones? Is there an upper limit to the amount of sequen- 
tial information that can be encoded, even after considerable 
practice? 

Second, most recent research on sequence processing has 
used very simple material (but see Lewicki et al., 1987), 
sometimes even accompanied by explicit cues to sequence 
structure (Lewicki et al., 1988). Are the effects reported in 
these relatively simple situations also observed when subjects 
are exposed to much more complex material involving, for 
instance, some degree of randomness, or sequence elements 
that differ widely in their predictability? 

Third, and perhaps most important, no detailed informa- 
tion-processing model of the mechanisms involved has been 
developed to account for the empirical findings reviewed 
above. In other words, what kind of mechanisms may underlie 
sequence learning in choice RT situations? 

In the rest of this article, we explore the first 2 questions by 
proposing an answer to the third. We first describe a parallel 
distributed processing (PDP) model in which processing of 
events is allowed to be modulated by contextual information. 
The model learns to develop its own internal representations 
of the temporal context despite very limited processing re- 
sources and produces responses that reflect the likelihood of 
observing specific events in the context of an increasingly 
large temporal "window." We then report on two experiments 
using a choice RT task. Unknown to subjects, successive 
stimuli followed a sequence derived from a "noisy" finite- 
state grammar, in which random stimuli were interspersed 
with structured stimuli in a small proportion of the trials 
throughout training. This procedure allowed us to obtain 
detailed data about subjects' expectations after specific stimuli 
at any point in training. After considerable practice (60,000 
exposures) with Experiment 1, subjects acquired a complex 
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body of procedural knowledge about the sequential structure 
of the material. We analyze this data in detail. Experiment 2 
attempts to identify limits on subjects' ability to encode the 
temporal context by using more distant contingencies that 
spanned irrelevant material. Next, we argue that the mecha- 
nisms implemented in our model may constitute a viable 
model of implicit learning in sequence learning situations and 
support this claim by a detailed analysis of the correspondence 
between the model and our experimental data. Finally, we 
examine how welt the model captures the interaction between 
attention and sequence structure reported by A. Cohen et al. 
(1990). 

A Model of  Sequence Learning 

Early research on sequence processing has addressed two 
related but distinct issues: probability learning situations, in 
which subjects are asked to predict the next event in a se- 
quence, and choice reaction situations, in which subjects 
simply respond to the current stimulus, but nevertheless dis- 
play sensitivity to the sequential structure of the material. 
Most of the work in this latter area has concentrated on 
relatively simple experimental situations, such as two-choice 
reaction time paradigms, and relatively simple effects, such 
as repetition and stimulus frequency effects. In both cases, 
most early models of sequence processing (e.g., Estes, 1976; 
Falmagne, 1965; Laming, 1969; Restle, 1970) have typically 
assumed that subjects somehow base their performance on an 
estimation of the conditional probabilities characterizing the 
transitions between sequence elements, but failed to show 
how subjects might come to represent or compute them. 
Laming (1969), for instance, assumed that subjects continu- 
ously update running average estimates of the probability of 
occurrence of each stimulus, on the basis of an arbitrarily 
limited memory of the sequence. Resfle (1970) emphasized 
the role that explicit recoding strategies play in probability 
learning, but presumably this work is less relevant in situations 
for which no explicit prediction responses are expected from 
the subjects. 

Two points seem to be problematic with these early models. 
First, it seems dubious to assume that subjects actually base 
their performance on some kind of explicit computation of 
the optimal conditional probabilities, except possibly in situ- 
ations in which such computations are required by the instruc- 
tions (such as in probability learning experiments). In other 
words, these early models are not process models. They may 
be successful in providing good descriptions of the data, but 
fail to give any insights into how processing is actually con- 
ducted. 

Second, it is not clear how the temporal context gets inte- 
grated in these early models. Often, an assumption is made 
that subjects estimate the conditional probabilities of the 
stimuli given the relevant temporal context information, but 
no functional account is provided of how the context infor- 
mat ion-and how much of i t J i s  allowed to influence proc- 
essing of the current event. 

In the following paragraphs, we present a model that learns 
to encode the temporal context as a function of whether it is 
relevant in optimizing performance at the task. The model 

consists of a simple recurrent network (SRN; see Cleeremans, 
Servan-Schreiber, & McClelland, 1989; Elman, 1990). The 
SRN (Figure 1) is a standard, fully connected, three-layer, 
back-propagation network, with the added property that the 
hidden unit layer is allowed to feed back on itself with a delay 
of one time step, so that the intermediate results of processing 
at Time t - 1 can influence the intermediate results of 
processing at Time t. In practice, the SRN is implemented by 
copying the pattern of activation on the hidden units onto a 
set of "context units" that feed into the hidden layer, along 
with the input units. All the forward-going connections in this 
architecture are modified by back-propagation. The recurrent 
connections from the hidden layer to the context layer imple- 
ment a simple copy operation and are not subject to training. 

At first sight, this architecture appears to be a good candi- 
date for modeling implicit learning phenomena. Indeed, as 
other connectionist architectures, it has a number of basic 
features that seem to make it highly appropriate for modeling 
implicit learning phenomena. For instance, because all the 
knowledge of the system is stored in its connections, this 
knowledge may only be expressed through performance, a 
central characteristic of implicit learning. Furthermore, the 
back-propagation learning procedure implements the kind of 
elementary associative learning that also seems characteristic 
of many implicit learning processes. However, there is also 
substantial evidence that knowledge acquired implicitly is 
very complex and structured (Reber, 1989), that is, not the 
kind of knowledge one thinks would emerge from associative 
learning processes. The work of Elman (in press), in which 
the SRN architecture was applied to language processing, 
demonstrated that the representations developed by the net- 
work are highly structured and accurately reflect subtle con- 
tingencies, such as those entailed by pronominal reference in 
complex sentences. Thus, it appears that the SRN embodies 
two important aspects of implicit learning performance: ele- 
mentary learning mechanisms that yield complex and struc- 
tured knowledge. The SRN model shares these characteristics 
with many other connectionist models, but its specific archi- 
tecture makes it particularly suitable for processing sequential 
material. In the following paragraphs, we examine how the 
SRN model is able to encode temporal contingencies. 

OUTPUT UNITS : Element t+l 

HIDDEN UNITS 

CONTEXT UNITS INPUT UNITS : Element t 

Figure 1. The simple recurrent network (SRN). 
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As reported elsewhere (Cleeremans et al., 1989), we have 
explored the computational aspects of this architecture in 
considerable detail. Following Elman (1990), we have shown 
that an SRN trained to predict the successor of each element 
of a sequence presented one element at a time can learn to 
perform this "prediction task" perfectly on moderately com- 
plex material. For instance, the SRN can learn to predict 
optimally each element of a continuous sequence generated 
from small finite-state grammars, such as the one represented 
in Figure 2. ~ After training, the network produces responses 
that closely approximate the optimal conditional probabilities 
of presentation of all possible successors of the sequence at 
each step. Because all letters of the grammar were inherently 
ambiguous (i.e., optimal predictions required more than the 
immediate predecessor to be encoded), the network must 
have developed representations of entire subsequences of 
events. Note that the network is never presented with more 
than one element of the sequence at a time. Thus, it has to 
elaborate its own internal representations of as much temporal 
context as needed to achieve optimal predictions. Through 
training, the network progressively comes to discover which 
features of the previous sequence are relevant to the prediction 
task. 

A complete analysis of the learning process is beyond the 
scope of this article (a full account is given in Servan-Schre- 
iber, Cleeremans, & McClelland, 1988), but the key points 
are as follows: As the initial articles about back-propagation 
(e.g., Rumelhart, Hinton, & Williams, 1986) pointed out, the 
hidden unit patterns of activation represent an "encoding" of 
the features of the input patterns that are relevant to the task. 
In the SRN, the hidden layer is presented with information 
about the current letter, but also--on the context layermwith 

Xl 
Start)~ 

# 5  

S2 

# 0  

T2 

# 6  

Figure 2. The finite state grammar used to generate the stimulus 
sequence in Experiment 1. (Note that the first and last nodes are one 
and the same.) 

an encoding of the relevant features of the previous letter. 
Thus, a given hidden layer pattern can come to encode 
information about the relevant features of two consecutive 
letters. When this pattern is fed back on the context layer, the 
new pattern of activation over the hidden units can come to 
encode information about three consecutive letters, and so 
on. In this manner, the context layer patterns can allow the 
network to learn to maintain prediction-relevant features of 
an entire sequence of events. Naturally, the actual process 
through which temporal context is integrated into the repre- 
sentations that the network develops is much more continu- 
ous than the above description implies. That is, the "phases 
of learning" outlined above are but particular points on a 
continuum. 

To summarize, learning and processing in the SRN model 
have several properties that make it attractive as an architec- 
ture for sequence learning. First, the model only develops 
sensitivity to the temporal context if it is relevant in optim- 
izing performance on the current element of the sequence. As 
a result, there is no need to make specific assumptions regard- 
ing the size of the temporal window that the model is allowed 
to receive input from. Rather, the Size of this self-developed 
window appears to be essentially limited by the complexity 
of the sequences to be learned by the network. Representa- 
tional resources (i.e., the number of hidden units available for 
processing) are also limiting factors, but only marginal ones. 
Second, the model makes minimal assumptions regarding 
processing resources: Its architecture is elementary, and all 
computations are local to the current element (i.e., there is 
no explicit representation of the previous elements). Process- 
ing is therefore strongly driven by the constraints imposed by 
the prediction task. As a consequence, the model tends to 
become sensitive to the temporal context in a very gradual 
way and will tend to fail to discriminate between the succes- 
sors of identical subsequences preceded by disambiguating 
predecessors when the embedded material is not itself de- 
pendent on the preceding information. We return to this last 
point in the General Discussion section. 

To evaluate the model as a theory of human learning in 
sequential choice reaction time situations, we assumed (a) 
that the activations of the output units represent response 
tendencies and (b) that the RT to a particular response is 
proportional to some function of the activation of the corre- 
sponding output unit. The specific instantiations of these 
assumptions that are adopted in this research are detailed 
later. With these assumptions in place, the model produces 
responses that can be directly compared with experimental 
data. In the following sections, we report on two experiments 
that were designed to allow for such detailed comparisons to 
be conducted. 

In a finite-state grammar, sequences can be generated by ran- 
domly choosing an arc among the possible arc emanating from a 
particular node and by repeating this process with the node pointed 
to by the selected arc. A continuous sequence can be generated by 
assuming that the grammar loops onto itself, that is, that its first and 
last nodes are one and the same. 
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E x p e r i m e n t  1 

Subjects were exposed to a six-choice RT task. The entire 
experiment was divided into 20 sessions. Each session con- 
sisted of 20 blocks of 155 trials. On any of the 60,000 recorded 
trials, a stimulus could appear at one of six positions arranged 
in a horizontal line on a computer screen. The task consisted 
of pressing as fast and as accurately as possible on one of six 
corresponding keys. Unknown to subjects, the sequential 
structure of the stimulus material was manipulated. Stimuli 
were generated using a small finite-state grammar that defined 
legal transitions between successive trials. Some of the stimuli, 
however, were not "grammatical." On each trial, there was a 
15% chance of substituting a random stimulus to the one 
prescribed by the grammar, This "noise" served two purposes. 
First, it ensured that subjects could not simply memorize the 
sequence of stimuli and hindered their ability to detect regu- 
larities in an explicit way. Second, because each stimulus was 
possible on every trial (if only in a small porportion of the 
trials), we could obtain detailed information about what stim- 
uli subjects did or did not expect at each step. 

If subjects become increasingly sensitive to the sequential 
structure of the material over training, one would thus predict 
an increasingly large difference in the RTs elicited by predict- 
able and unpredictable stimuli. Furthermore, detailed anal- 
yses of the RTs to particular stimuli in different temporal 
contexts should reveal differences that reflect subjects" pro- 
gressive encoding of the sequential structure of the material. 

M e t h o d  

Subjects. Six subjects (Carnegie Mellon University [CMU] staff 
and students), aged 17--42, participated in the experiment. Subjects 
were each paid $100 for their participation in the 20 sessions of the 
experimem and received a bonus of up to $50 on the basis of speed 
and aeemaey. 

Apparatus and display. The experiment was run on a Macintosh 
II computer. The display consisted of six dots arranged in a horizontal 
line on the computer's screen and separated by intervals of 3 cm. At 
a viewing distance of 57 cm, the distance between any two dots 
subtended a visual angle of 3". Each screen position corresponded to 
a key on the computer's keyboard. The spatial configuration of the 
keys was entirely compatible with the screen positions (i.e., the 
leftmost key corresponded to the leftmost screen position, and so on). 
The stimulus was a small black circle 0.40 cm in diameter that 
appeared centered 1 cm below one of the six dots. The timer was 
started at the onset of the stimulus and stopped by the subjects' 
response. The response-stimulus interval was 120 ms. 

Procedure. Subjects received detailed instructions during the fn'st 
meeting. They were told that the purpose of the experiment was to 
"learn more about the effect of practice on motor performance." 
Both speed and accuracy were stressed as being important. After 
receiving the instructions, subjects were given three practice blocks 
of 15 random trials each at the task. A schedule for the 20 experi- 
mental sessions was then set up. Most subjects followed a regular 
schedule of 2 sessions a day. 

The experiment itself consisted of 20 sessions of 20 blocks of 155 
trials each. Each block was initiated by a get ready message and a 
warning beep. After a short delay, 155 trials were presented to the 
subjects. The first 5 trials of each block were entirely random so as 

to eliminate initial variability in the responses. These data points 
were not recorded. The next 150 trials were generated according to 
the procedure described below (in the Stimulus material section). 
Errors were signaled to the subjects by a short beep. After each block, 
the computer paused for approximately 30 s. The message rest break 
was displayed on the screen, along with information about subjects' 
performance. This feedback consisted of the mean RT and accuracy 
values for the last block and of information about how these values 
compared with those for the next-to-last block. If the mean RT for 
the last block was within a 20-ms interval of the mean RT for the 
next-to-last block, the words as before were displayed; otherwise, 
either better or worse appeared. A 2% interval was used for accuracy. 
Finally, subjects were also told about how much they had earned 
during the last block and during the entire session up to the last block. 
Bonus money was allocated as follows: Each reaction time under 600 
ms was rewarded by .078¢, and each error entailed a penalty of 1.11 ¢. 
These values were calculated so as to yield a maximum of $2.50 per 
session. 

Stimulus material. Stimuli were generated on the basis of the 
small finite-state grammar shown in Figure 2. Finite-state grammars 
consist of nodes connected by labeled arcs. Expressions of the lan- 
guage are generated by starting at Node #0, choosing an are, recording 
its label, and repeating this process with the next node. Note that the 
grammar loops onto itself: The first and last nodes, both denoted by 
the digit 0, are actually the same. The vocabulary associated with the 
grammar consists of six letters (T, S, X, V, P, and Q), each represented 
twice on different ares (as denoted by the subscript on each letter). 
This results in highly context-dependent transitions, as identical 
letters can be followed by different sets of successors as a function of 
their position in the grammar (For instance, St can only be followed 
by Q, but $2 can be followed by either V or P). Finally, the grammar 
was constructed so as to avoid direct repetitions of a particular letter, 
because it is known (Bertelson, 1961; Hyman, 1953) that repeated 
stimuli elicit shorter RTs independently of their probability of pres- 
entation. (Direct repetitions can still occur because a small proportion 
of the trials were generated randomly, as described below.) 

Stimulus generation proceeded as follows. On each trial, three steps 
were executed in sequence. First, an arc was selected at random 
among the possible arcs coming out of the current node, and its 
corresponding letter recorded. The current node was set to be Node 
#0 on the sixth trial of any block and was updated on each trial to be 
the node pointed to by the selected are. Second, in 15% of the cases, 
another letter was substituted to the letter recorded at Step 1 by 
choosing it at random among the five remaining letters in the 
grammar. Third, the selected letter was used to determine the screen 
position at which the stimulus would appear. A 6 x 6 Latin square 
design was used, so that each letter corresponded to each screen 
position for exactly 1 of the 6 subjects. (Note that subjects were never 
presented with the actual letters of the grammar.) 

Postexperimental interviews. All subjects were interviewed after 
completion of the experiment. The experimenter asked a series of 
increasingly specific questions in an attempt to gain as much infor- 
mation about subjects' explicit knowledge of the manipulation and 
the task. 

Resul t s  a n d  Discuss ion 

Task performance. Figure 3 shows the average RTs on 
correct responses for each of the 20 experimental sessions, 
plotted separately for predictable and unpredictable trials. We 
discarded responses to repeated stimuli (which are necessarily 
ungrammatical) because they elicit fast RTs independently of 
their probability of presentation, as discussed above. Figure 3 
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Figure 3. Mean reaction times for grammatical and ungrammatical 
trials for each of the 20 sessions of Experiment 1. 

shows that a general practice effect is readily apparent, as is 
an increasingly large difference between predictable and un- 
predictable trials. A two-way analysis of variance (ANOVA) 
with repeated measures on both factors (practice [20 levels] 
by trial type [grammatical vs. ungrammatical]) revealed sig- 
nificant main effects of practice, F(19, 95) = 9.491, p < .001, 
MSe = 17710.45, and of trial type, F(1, 5) = 105.293, p < 
.OOl, MSe = 104000.07, as well as a significant interaction, 
F(19, 95) -- 3.022, p < .001, MSe -- 183.172. It appears that 
subjects become increasingly sensitive to the sequential struc- 
ture of the material. To assess whether the initial difference 
between grammatical and ungrammatical trials was signifi- 
cant, a similar analysis was conducted on the data from the 
first session only, using the 20 blocks of this session as the 
levels of the practice factor. This analysis revealed that there 
were significant main effects of practice, F(19, 95) = 4.006, p 
< .001, MSo = 2634.295, and of trial type, F(I,  5) = 8.066, p 
< .05, MS¢ = 3282.914, but no interaction, F(19, 95) = 1.518, 
p > .05, MS, -- 714.558. We provide an interpretation for 
this initial difference when examining the model's perform- 
ance. 

Accuracy averaged 98.12% over all trials. Subjects were 
slightly more accurate on grammatical trials (98.40%) than 
on ungrammatical trials (96.10%) throughout the experiment. 
A two-way ANOVA with repeated measures on both factors 
(practice [20 levels] by trial type [grammatical vs. ungrammat- 
ical]) confirmed this difference, F(1, 5) -- 7.888, p < .05, MS~ 
= .004. The effect of practice did not reach significance, F(I 9, 
95) = .380, p > .05, MS¢ = .0003; neither did the interaction, 
F(19, 95) -- .727, p > .05, MS, = .00017. 

Postexperimental interviews. Each subject was inter- 
viewed after completion of the experiment. We loosely fol- 
lowed the scheme used by Lewicki et al. (1988). Subjects were 
first asked about "whether they had anything to report regard- 
ing the task." All subjects reported that they felt their perform- 
ance had improved a lot during the 20 sessions, but much 
less so in the end. Two subjects reported that they felt frus- 
trated because of the lack of improvement in the last sessions. 

Next, subjects were asked whether they "had noticed any- 
thing special about the task or the material." This question 
failed to elicit more detailed reports. All subjects tended to 
repeat the comments they had given in answering the first 
question. 

Finally, subjects were asked directly whether they "had 
noticed any regularity in the way the stimulus was moving on 
the screen." All subjects reported noticing that short sequences 
of alternating stimuli did occur frequently. When probed 
further, 5 subjects were able to specify that they had noticed 
two pairs of positions between which the alternating pattern 
was taking place. On examination of the data, it appeared 
that these reported alternations corresponded to the two small 
loops on Nodes #2 and #4 of the grammar. One subject also 
reported noticing another more complex pattern between 
three positions, but was unable to specify the exact locations 
when asked. All subjects felt that the sequence was random 
when not involving these salient patterns. When asked 
whether they "had attempted to take advantage of the patterns 
they had noticed in order to anticipate subsequent events," 
all subjects reported that they had attempted to do so at times 
(for the shorter patterns), but that they felt that it was detri- 
mental to their performance as it resulted in more errors and 
slower responses. Thus, it appearS that subjects only had 
limited reportable knowledge of the sequential structure of 
the material and that they tried not to use what little knowl- 
edge they had. 

Gradual encoding of the temporal context. As discussed 
earlier, one mechanism that would account for the progressive 
differentiation between predictable and unpredictable trials 
consists of assuming that subjects, in attempting to optimize 
their responses, progressively come to prepare for successive 
events on the basis of an increasingly large temporal context 
set by previous elements of the sequence. In the grammar we 
used, the uncertainty associated with the next dement of the 
sequence can, in most cases, be optimally reduced by encoding 
two elements of temporal context. However, some sequence 
dements require three or even four elements of temporal 
context to be optimally disambiguated. For instance, the path 
SQ (leading to Node #1) occurs only once in the grammar 
and can only be legally followed by S or by X. In contrast, 
the path TVX can lead to either Node #5 or Node #6 and is 
therefore not sufficient to perfectly distinguish between stim- 
uli that occur only (in accordance with the grammar) at Node 
#5 (S or Q) and stimuli that occur only at Node #6 (T or P). 
One would assume that subjects initially respond to the 
contingencies entailed by the shortest paths and progressively 
become sensitive to the higher order contingencies as they 
encode more and more temporal context. 

A simple analysis that would reveal whether subjects are 
indeed basing their performance on an encoding of an increas- 
ingly large temporal context was conducted. The analysis' 
general principle consists of comparing the data with the 
probability of occurrence of the stimuli, given different am- 
ounts of temporal context. 

First, we estimated the overall probability of observing each 
letter as well as the conditional probabilities (CPs) of observing 
each letter as the successor of every grammatical path of 
length l, 2, 3, and 4, respectively. This was achieved by 
generating 60,000 trials in exactly the same way as during the 
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experiment and by recording the probability of observing 
every letter after every observed sequence of every length up 
to four elements. Only grammatical paths (i.e., sequences of 
letters that conform to the grammar) were then retained for 
further analysis. There are 70 such paths of length 4, each 
possibly followed by each of the six letters, thus yielding a 
total of 420 data points. There are fewer types of shorter paths, 
but each occurs more of ten .  

Next, the set of average correct RTs for each successor to 
every grammatical path of length 4 was computed, separately 
for groups of four successive experimental sessions. 

Finally, 25 separate regression analyses were conducted, 
using each of the five sets of CPs (0-4) as predictors, and each 
of the five sets of mean RTs as dependent variables. Because 
the human data are far from being perfectly reliable at this 
level of detail, the obtained correlation coefficients were then 
corrected for attenuation. Reliability was estimated by the 
split-halves method (Carmines & Zeller, 1987), using data 
from even and odd experimental blocks. 

Figure 4 illustrates the results of these analyses. Each point 
o n  the figure represents the corrected r 2 of a specific regression 
analysis. Points corresponding to analyses conducted with the 
same amount of temporal context (0--4 elements) are linked 
together. 

If subjects are encoding increasingly large amounts of tem- 
poral context, we would expect the variance in the distribution 
of their responses at successive points in training to be better 
explained by CPs of increasingly higher statistical orders. 
Although the overall fit is rather low (note that the vertical 
axis only extends to 0.5), Figure 4 nevertheless reveals the 
expected pattern: First, the correspondence between human 
responses and the overall probability of appearance of each 
letter (CP-0) is very close to zero. This clearly indicates that 
subjects are responding on the basis of  an encoding of the 
constraints imposed by previous elements of the sequence. 
Second, one can see that the correspondence with the first- 
order CPs tends to level off below the fits for the second, 
third, and fourth orders early in training. By contrast, the 
correspondence between the data and the higher order CPs 
keeps increasing throughout the entire experiment. The fits 
to the second-, third-, and fourth-order paths are highly 
similar in part because their associated CPs are themselves 
highly similar. This in turn is due to the fact that only a small 
proportion of sequence elements are ambiguous up to the 
third or fourth position. Furthermore, even though the data 
may appear to be most closely consistent with the second 
order CPs throughout the task, a separate analysis restricted 
to the first 4 sessions of training indicated that the first-order 
CPs were the best predictor of the data in the first 2 sessions. 
Finally, it is still possible that deviations from the second- 
order CPs are influenced by the constraints reflected in the 
third- or even fourth-order CPs. The next section addresses 
this issue. 

Sensitivity to long-distance temporal contingencies. To as- 
sess more directly whether subjects are able to encode three 
or four letters of temporal context, several analyses on specific 
successors of specific paths were conducted. One such analysis 
involved several paths of length 3. These paths were the same 
in their last two elements, but differed in their first element 
as well as in their legal successors. For example, we compared 
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Correspondence between the human responses and con- 
ditional probabilities (CP) after paths of length 0-4 during successive 
blocks of four simulated sessions. 

XTV with PTV and QTV and examined RTs for the letters 
S (legal only after XTV) and T(legal only after FTV or QTV). 
If subjects are sensitive to three letters of context, their re- 
sponse to an S should be relatively faster after XTV than in 
the other cases, and their response to a T should be relatively 
faster after PTV or QTV than after XTV. Similar contrasting 
contexts were selected in the following manner: First, as 
described above, we only considered grammatical paths of 
length 3 that were identical but for their first element. Specific 
ungrammatical paths are too infrequent to be represented 
often enough in individual subject's data. Second, some paths 
were eliminated to control for priming effects to be discussed 
later. For instance, the path VTV was eliminated from the 
analysis because the alternation between V and T favors a 
subsequent T. This effect is absent in contrasting cases, such 
as XTV, and may thus introduce biases in the comparison. 
Third, specific successors to the remaining paths were elimi- 
nated for similar reasons. For instance, we eliminated S from 
comparisons on the successors of SQX and PQX because 
both Q and S prime S in the case of SQX but not in the case 
of PQX. As a result of this residual priming, the response to 
S after SQX tends to be somewhat faster than what would be 
predicted on the basis of the grammatical constraints only, 
and the comparison is therefore contaminated. These succes- 
sive eliminations left the following contrasts available for 
further analysis: SQX-Q and PQX-T (grammatical) versus 
SQX-T and PQX-Q (ungrammatical); SVX-Q and TVX-P 
versus SVX-P and TVX-Q; and XTV-S, PTV-T, and QTV- 
T versus XTV-T, PTV-S, and QTV-S. 

Figure 5 shows the RTs elicited by grammatical and un- 
grammatical successors of these remaining paths, averaged 
over blocks of 4 successive experimental sessions. The figure 
reveals that there is a progressively widening difference be- 
tween the two curves, thereby suggesting that subjects become 
increasingly sensitive to the contingencies entailed by ele- 
ments of the temporal context as removed as three elements 
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Figure 5. Mean reaction times for predictable and unpredictable 
successors of selected paths of length 3 and for successive blocks of 
four experimental sessions. 

from the current trial. A two-way ANOVA with repeated 
measures on both factors (practice [four levels] by successor 
type [grammatical vs. ungrammatical]) was conducted on 
these data and revealed significant main effects of successor 
type, F(1, 5) = 7.265, p < .05, MSe = 530.786, and of practice, 
F(4, 20) = I 1.333, p < .001, MSe = 1602.862. The interaction 
just missed significance, F(4, 20) = 2.530, p < .07, MS~ = 
46.368, but it is obvious that most of the effect is located in 
the later sessions of the experiment. This was confirmed by 
the results of a one-tailed paired t test conducted on the 
difference between grammatical and ungrammatical succes- 
sors, pooled over the first 8 and the last 8 sessions of training. 
The difference score averaged -11.3 ms early in training and 
-22.8 ms late in training. It was significantly bigger late in 
training, t(5) = -5.05, p < .005. Thus, there appears to be 
evidence of a gradually increasing sensitivity to at least three 
elements of temporal context. 

A similar analysis was conducted on selected paths of length 
4. After selecting candidate contexts as described above, the 
following paths remained available for further analysis: 
XTVX-S, XTVX-Q, QTVX-T, QTVX-P, PTVX-T, and 
PTVX-P (grammatical) versus XTVX-T, XTVX-P, 
QTVX-S, QTVX-Q, PTVX-S, and PTVX-Q (ungrammat- 
ical). No sensitivity to the first element of these otherwise 
identical paths of length 4 was found, even during Sessions 
17-20: A paired, one-tailed t test on the difference between 
grammatical and ungrammatical successors failed to reach 
significance t(5) = .076, p > .  I. Although one cannot reject 
the idea that subjects would eventually become sensitive to 
the constraints set by temporal contingencies as distant as 
four elements, there is no indication that they do so in this 
situation. 

Exper iment  2 

seem to be able to maintain information about the temporal 
context for up to three steps. The temporal contingencies 
characterizing this grammar were relatively simple, however, 
because in most cases, only two elements of temporal context 
are needed to disambiguate the next event perfectly. 

Furthermore, contrasting, long-distance dependencies were 
not controlled for their overall frequency. In Experiment 2, a 
more complex grammar (Figure 6) was used in an attempt to 
identify limits on subjects' ability to maintain information 
about more distant elements of the sequence. In this grammar, 
the last element (A or X) is contingent on the first one (also 
A or X). Information about the first element, however, has to 
be maintained across either of the two identical embeddings 
in the grammar and is totally irrelevant for predicting the 
elements of the embeddings. Thus, to accurately prepare for 
the last element at Nodes #11 or #12, one needs to maintain 
information for a minimum of four steps. Accurate expecta- 
tions about the nature of the last element would be revealed 
by a difference in the RT elicited by the letters A and X at 
Nodes #11 and #12 (A should be faster than X at Node #1 l 
and vice versa). Naturally, there was again a 15% chance of 
substituting another letter for the one prescribed by the 
grammar. Furthermore, a small loop was inserted at Node 
#13 so as to avoid direct repetitions between the letters that 
precede and follow Node # 13. One random letter was always 
presented at this point; after which there was a 40% chance 
of staying in the loop on subsequent steps. 

Finally, to obtain more direct information about subjects' 
explicit knowledge of the training material, we asked them to 
try to generate the sequence after the experiment was com- 
pleted. This "generation" task involved exactly the same 
stimulus sequence generation procedure as during training. 
On every trial, subjects had to press on the key corresponding 
to the location of the next event. 

M e t h o d  

The design of Experiment 2 was almost identical to that of Exper- 
iment 1. The changes are detailed below. 

A A 

X X 

Experiment 1 demonstrated that subjects progressively be- 
come sensitive to the sequential structure of the material and 

Figure 6. The finite state grammar used to generate the stimulus 
sequence in Experiment 2. 
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Subjects. Six new subjects (CMU undergraduates and graduates), 
aged 19-35, participated in Experiment 2. 

Generation task. Experiment 1 did not include any strong test of 
subjects' verbalizable knowledge about the stimulus material. In the 
present experiment, we attempted to remedy this situation by using 
a generation task inspired by Nissen 'and Bullemer (1987). After 
completing the 20 experimental sessions, subjects were informed of 
the nature of the manipulation and asked to try to predict the 
successor of each stimulus. The task consisted of three blocks of 155 
trials of events generated in exactly the same way as during training. 
(As during the experiment itself, the 5 initial random trials of each 
block were not recorded.) On each trial, the stimulus appeared below 
one of the six screen positions, and subjects had to press on the key 
corresponding to the position at which they expected the next stim- 
ulus to appear. Once a response had been typed, a cross 0.40 cm in 
width appeared centered 1 cm above the screen position correspond- 
ing to the subjects' prediction, and the stimulus was moved to its 
next location. A short beep was emitted by the computer on each 
error. Subjects were encouraged to be as accurate as possible. 

Results and Discussion 

Task performance. Figure 7 shows the main results of  
Experiment 2. They closely replicate the general results of  
Experiment 1, although subjects were a little bit faster overall 
in Experiment 2. A two-way ANOVA with repeated measures 
on both factors (practice [20 levels] by trial type [grammatical 
vs. ungrammatical]) again revealed significant main effects of  
practice, F(19, 95) = 32.011, p < .001, MS~ = 21182.79, and 
of  trial type, F(1, 5) = 253.813, p < .001, MSe = 63277.53, 
as well as a significant interaction, F(19, 95) = 4.670, p < 
.001, MS, = 110.862. A similar analysis conducted on the 
data from only the first session again revealed significant main 
effects of  practice, F(19, 95) = 4.631, p < .001, MSe = 
1933.331, and of  trial type, F(1, 5) = 19.582, p < .01, MS, = 
861.357, but no interaction, F(19, 95) = 1.383, p > .1, MS~ 
= 343.062. 

Accuracy averaged 97% over all trials. Subjects were again 
slightly more accurate on grammatical (97.60%) than on 
ungrammatical (95.40%) trials. However, a two-way ANOVA 
with repeated measures on both factors (practice [20 levels] 
by trial type [grammatical vs. ungrammatical]) failed to con- 
firm this difference, F(I ,  5) = 5.351, p > .05, MSe = .005. 
The effect of  practice did reach significance, F(19, 95) = 
4.112, p < .001, MS, = .00018, but not the interaction, F(I  9, 
95) = 1.060, p > .05, MS, = .00008. Subjects became more 
accurate on both grammatical and ungrammatical trials as 
the experiment progressed. 

Sensitivity to long-distance temporal contingencies. Of 
greater interest are the results of  analyses conducted on the 
responses elicited by the successors of  the four shortest paths 
starting at Node #0 and leading to either Node #11 or Node 
#12 (AJCM, AMLJ, XJCM, and XMLJ). Among those paths, 
those beginning with A predict A as their only possible 
successor and vice versa for paths starting with X. Because 
the subpaths JCM and ML3 undifferentiaUy predict A or X 
as their possible successors, subjects need to maintain infor- 
mation about the initial letter to accurately prepare for the 
successors. The RTs on legal successors of  each of  these four 
paths (i.e., A for AJCM and AMLJ and X for XJCM and 
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Figure 7. Mean reaction times for grammatical and ungrammatical 
trials for each of the 20 sessions of Experiment 2. 

XMLJ) were averaged together and compared with the ave- 
rage RT on the illegal successors (i.e., X for AJCM and A M U  
and A for XJCM and XMU) ,  thus yielding two scores. Any 
significant difference between these two scores would mean 
that subjects are disciminating between legal and illegal suc- 
cessors of  these four paths, thereby suggesting that they have 
been able to maintain information about the In-st letter of  
each path over three irrelevant steps. The mean RT on legal 
successors over the last four sessions of  the experiment was 
385, and the corresponding score for illegal successors was 
388. A one-tailed paired t test on this difference failed to 
reach significance, t(5) = 0.571, p > .05. Thus, there is no 
indication that subjects were able to encode even the shortest 
long-distance contingency of  this type. 

Generation task. To determine whether subjects were bet- 
ter able to predict grammatical elements than ungrammatical 
elements after training, a two-way ANOVA with repeated 
measures on both factors (practice [three levels] by trial type 
[grammatical vs. ungrammatical]) was conducted on the ac- 
curacy data of  5 subjects (one subject had to be eliminated 
because of  a technical f~lure). 

For grammatical trials, subjects averaged 23.00%, 24.40%, 
and 26.20% correct predictions for the three blocks of  prac- 
tice, respectively. The corresponding data for the ungrammat- 
ical trials were 18.4%, 13.8%, and 20.10%. Chance level was 
16.66%. It appears that subjects are indeed better able to 
predict grammatical events than ungrammatical events. The 
ANOVA confirmed tiffs effect: There was a significant main 
effect of  trial type, F(1, 4) = 10.131, p < .05, MSe = .004, but 
no effect of  practice, F(2, 8) = 1.030, p > .05, MS+ = .004, 
and no interaction, F(2, 8) = .1654, p > .05, MSe = .001. 
Although overall accuracy scores are very low, these results 
nevertheless clearly indicate that subjects have acquired some 
explicit knowledge about the sequential structure of  the ma- 
terial in the course of  training. This is consistent with previous 
studies (A. Cohen et al., 1990; Willingham et al., 1989) and 
not surprising given the extensive training to which subjects 



1.0 have been exposed. At the same time, it is clear that whatever 
knowledge was acquired during training is of limited use in 
predicting grammatical elements, because subjects were only 
able to do so in about 25% of the trials of the generation task. 

Simulat ion of  the Experimental  Data  

Taken together, the results of both experiments suggest that 
subjects do not appear to be able to encode long-distance 
dependencies when they involve four elements of temporal 
context (i.e., three items of embedded independent material); 
at least, they cannot do so under the conditions used here. 
However, there is clear evidence of sensitivity to the last three 
elements of the sequence (Experiment 1). Furthermore, there 
is evidence for a progressive encoding of the temporal context 
information: Subjects rapidly learn to respond on the basis of 
more than the overall probability of each stimulus and be- 
come only gradually sensitive to the constraints entailed by 
higher order contingencies. 

Application of the SRN Model 
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Figure 8. Correspondence between the simple recurrent network's 
responses and conditional probabilities (CP) after paths of length 0- 
4 during successive blocks of four simulated sessions. 

To model our experimental situation, we used an SRN with 
15 hidden units and local representations on both the input 
and output pools (i.e., each unit corresponded to one of the 
six stimuli). The network was trained to predict each element 
of a continuous sequence of stimuli generated in exactly the 
same conditions as for human subjects in Experiment I. On 
each step, a letter was generated from the grammar as de- 
scribed in the Method section of Experiment 1 and presented 
to the network by setting the activation of the corresponding 
input unit to 1.0. Activation was then allowed to spread to 
the other units of the network, and the error between its 
response and the actual successor of the current stimulus was 
then used to modify the weights. 

During training, the activation of each output unit was 
recorded on every trial and transformed into Luce ratios 
(Luce, 1963) to normalize the responses? For the purpose of 
comparing the model's and the subjects' responses, we as- 
sumed (a) that the normalized activations of the output units 
represent response tendencies and (b) that there is a linear 
reduction in RT proportional to the relative strength of the 
unit corresponding to the correct response. 

This data was first analyzed in the same way as for Exper- 
iment 1 subjects and compared with the CPs of increasingly 
higher statistical orders in 20 separate regression analyses. The 
results are illustrated in Figure 8. 

In stark contrast with the human data (Figure 4; note the 
scale difference), the variability in the model's responses ap- 
pears to be very strongly determined by the probabilities of 
particular successor letters given the temporal context. Figure 
8 also reveals that the model's behavior is dominated by the 
first-order CPs for most of the training, but that it becomes 
progressively more sensitive to the second- and higher order 
CPs. Beyond 60,000 exposures, the model's responses come 
to correspond most closely to the second-, then third-, and 
then finally fourth-order CPs. 

Figure 9 illustrates a more direct comparison between the 
model's responses at successive points in training with the 

corresponding human data. We compared human and simu- 
lated responses after paths of length 4 in 25 separate analyses, 
each using one of the five sets of simulated responses as 
predictor variable and one of the five sets of experimental 
responses as dependent variable. The obtained correlation 
coefficients were again corrected for attenuation. The results 
are illustrated in Figure 9. Each point in the figure represents 
the corrected r 2 of a specific analysis. One would expect the 
model's early performance to be a better predictor of the 
subjects' early behavior and vice versa for later points in 
training. 

It is obvious that the model is not very good at capturing 
subjects' behavior: The overall fit is relatively low (note that 
the vertical axis only goes up to .5) and reflects only weakly 
the expected progressions. It appears that too much of the 
variance in the model's performance is accounted for by 
sensitivity to the temporal context. 

However, exploratory examination of the data revealed that 
factors other than the conditional probability of appearance 
of a stimulus exert an influence on performance in our task. 
We identified three such factors and incorporated them in a 
new version of the simulation model. 

The Augmented SRN model 

First of all, it appears that a response that is actually 
executed remains primed for a number of subsequent trials 
(Bertelson, 1961; Hyman, 1953; Remington, 1969). In the 
last sessions of our data, we found that if a response follows 

2 This transformation amounts to dividing the activation of the 
unit corresponding to the response by the sum of the activations of 
all units in the output pool. Because the strength of a particular 
response is determined by its relative, rather than absolute, activation, 
the transformation implements a simple form of response competi- 
tion. 
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Figure 9. Correspondence between the simple recurrent network's 
(SRN's) responses and the human data during successive blocks of 
four sessions of training (Experiment 1). 

itself immediately, there is about 60 to 90 ms of facilitation, 
depending on other factors. If it follows after a single inter- 
vening response (as in VT-V in Experiment 1, for example), 
there is about 25 ms of facilitation if the letter is grammatical 
at the second occurrence and 45 ms if it is ungrammatical. 

The second factor may be related: Responses that are 
grammatical at Trial t but do not actually occur remain 
primed at Trial t + 1. The effect is somewhat weaker, averag- 
ing about 30 ms. 

These two factors may be summarized by assuming (a) that 
activations at Time t decay gradually over subsequent trials 
and (b) that responses that are actually executed become fully 
activated, whereas those that are not executed are only par- 
tially activated. 

The third factor is a priming, not of a particular response, 
but of a particular sequential pairing of responses. This can 
best be illustrated by a contrasting example, in which the 
response to the second X is compared in QXQ-X and VXQ- 
X. Both transitions are grammatical; yet the response to the 
second X tends to be about 10 ms faster in cases similar to 
QXQ-X, in which the X follows the same predecessor twice 
in a row, than it is in cases similar to VXQ-X, in which the 
first X follows one letter and the second follows a different 
letter. 

This third factor can perhaps be accounted for in several 
ways. We have explored the possibility that it results from a 
rapidly decaying component to the increment to the connec- 
tion weights mediating the associative activation of a letter by 
its predecessor. Such "fast" weights have been proposed by a 
number of investigators (Hinton & Plaut, 1987; McClelland 
& Rumelhart, 1985). The idea is that when X follows Q, the 
connection weights underlying the prediction that X will 
follow Q receive an increment that has a short-term compo- 
nent in addition to the standard long-term component. This 
short-term increment decays rapidly, but is still present in 

sufficient force to influence the response to a subsequent X 
that follows an immediately subsequent Q. 

In the light of these analyses, one possibility for the relative 
failure of the original model to account for the data is that 
the SRN model is partially correct, but that human responses 
are also affected by rapidly decaying activations and adjust- 
ments to connection weights from preceding trials. To test 
this idea, we incorporated both kinds of mechanisms into a 
second version of the model. This new simulation model was 
exactly the same as before, except for two changes. 

First, it was assumed that preactivation of a particular 
response was based not only on activation coming from the 
network, but also on a decaying trace of the previous activa- 
tion: 

ravact[i](t) = act[i](t) + (1 - act[i](t))*k*ravact[i](t - 1) 

where act(t) is the activation of the unit based on the network 
at Time t, and ravact(t), that is, running average activation at 
time t, is a nonlinear running average that remains bounded 
between 0 and 1. After a particular response had been exe- 
cuted, the corresponding ravact was set to 1.0. The other 
ravacts were left at their current values. The constant k was 
set to 0.5, so that the half-life of a response activation is one 
time step. 

The second change consisted of assuming that changes 
imposed on the connection weights by the back-propagation 
learning procedure have two components. The first compo- 
nent is a small (slow ~ -- 0.15) but effectively permanent 
change (i.e., a decay rate slow enough to ignore for present 
purposes), and the other component is a slightly larger (fast 
-- 0.2) change, but which has a half-life of only a single time 
step. (The particular values of ~ were chosen by trial and error, 
but without exhaustive search.) 

With these changes in place, we observed that, of course, 
the proportion of the variance in the model accounted for by 
predictions based on the temporal context is dramatically 
reduced, as illustrated in Figure l0 (compare with Figure 8). 
More interesting, the pattern of change in these measures as 
well as the overall fit is now quite similar to that observed in 
the human data (Figure 4). 

Indeed, there is a similar progressive increase in the corre- 
spondence with the higher order CPs, with the curve for the 
first-order CPs leveling off relatively early with respect to 
those corresponding to CPs based on paths of length 2, 3, 
and 4. 

A more direct indication of the good fit provided by the 
current version of the model is given by the fact that it now 
correlates very well with the performance of the subjects 
(Figure l 1; compare with the same analysis illustrated in 
Figure 9, but note the scale difference). Late in training, the 
model explains about 81% of the variance of the correspond- 
ing human data. Close inspection of the figure also reveals 
that, as expected, the SRN's early distribution of responses is 
a slightly better predictor of the corresponding early human 
data. This correspondence gets inverted later on, thereby 
suggesting that the model now captures key aspects of acqui- 
sition as well. Indeed, at almost every point, the best predic- 
tion of the human data is the simulation of the corresponding 
point in training. 
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Figure 10. Correspondence between the augmented simple recur- 
rent network's responses and conditional probabilities (CPs) after 
paths of length 0--4 during successive blocks of four simulated ses- 
sions. 

Two aspects of these data need some discussion. First, the 
curves corresponding to each set of CPs are close to each 
other because the majority of the model's responses retain 
their relative distribution as training progresses. This is again 
a consequence of the fact that only a few elements of the 
sequence require more than two elements of temporal context 
to be perfectly disambiguated. 

Second, the model's responses correlate very well with the 
data, but not perfectly. This raises the question as to whether 
there are aspects of the data that cannot be accounted for by 
the postulated mechanisms. There are three reasons why this 
need not be the case. First, the correction for attenuation 
assumes homogeneity, but because of different numbers of 
trials in different cells there is more variability in some cells 
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Correspondence between the augmented simulated re- 
current network's (SRN's) responses and the human data during 
successive blocks of four sessions of training (Experiment 1). 

than in others (typically, the cells corresponding to grammat- 
ical successors of paths of length 4 are much more stable than 
those corresponding to ungrammatical successors). Second, 
the set of parameters we used is probably not optimal. Al- 
though we examined several combinations of parameter val- 
ues, the possibility of better fits with better parameters cannot 
be excluded. Finally, in fitting the model to the data, we have 
assumed that the relation between the models' responses and 
reaction times was linear, whereas in fact it might be some- 
what curvilinear. These three facts would all tend to reduce 
the r 2 well below 1.0 even if the model is in fact a complete 
characterization of the underlying processing mechanisms. 

The close correspondence between the model and the sub- 
jects' behavior during learning is also supported by an analysis 
of the model's responses to paths of length 3 and 4 (Experi- 
ment 1). Using exactly the same selection of paths as for the 
subjects in each case, we found that a small but systematic 
difference between the model's responses to predictable and 
unpredictable successors to paths of length 3 emerged in 
Sessions 9-12 and kept increasing over Sessions 13-16 and 
17-20. The difference was .056 (i.e., a 5.6% difference in the 
mean response strength) when averaged over the last four 
sessions of training. By contrast, this difference score for paths 
of length 4 was only .003 at the same point in training, 
thereby deafly indicating that the model was not sensitive to 
the fourth-order temporal context. 

Finally, to further illustrate the correspondence between 
the model and the experimental data, we wanted to compare 
human and simulated responses on an ensemble of specific 
successors of specific paths, but the sheer number of data 
points renders an exhaustive analysis virtually intractable. 
There are 420 data points involved in each of the analyses 
discussed above. However, one analysis that is more parsi- 
monious, but that preserves much of the variability of the 
data, consists of comparing human and simulated responses 
for each letter at each node of the grammar. Because the 
grammar used in Experiment I counts seven nodes (0-6), and 
because each letter can occur at each node because of the 
noise, this analysis yields 42 data points, a comparatively 
small number. Naturally, some letters are more likely to occur 
at some nodes than at others, and therefore, one expects the 
distribution of average RTs over the six possible letters to be 
different for different nodes. For instance, the letters V and P 
should elicit relatively faster responses at Node #0, where both 
letters are grammatical, than at Node #2, where neither of 
them is. Figure 12 represents the results of this analysis. Each 
individual graph shows the response to each of the six letters 
at a particular node, averaged over the last four sessions of 
training, for both human and simulated data. Because there 
is an inverse relationship between activations and RTs, the 
model's responses have been subtracted from 1. All responses 
were then transformed into standard scores to allow for direct 
comparisons between the model and the experimental data, 
and the figures therefore represent deviations from the general 
mean. 

Visual examination reveals that the correspondence be- 
tween the model and the data is very good. This was con- 
firmed by the high degree of association between the two data 
sets: The corrected r 2 was .88. Commenting in detail on each 
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Figure 12. Human and simulated responses to each of the six letters, 
plotted separately for each node (#0 to #6) of the grammar (Experi- 
ment 1). (All responses have been transformed into standard scores 
with respect to the mean of the entire distribution.) 

of the figures seems unnecessary, but some aspects of the data 
are worth remarking on. For instance, one can see that the 
fastest response overall is elicited by a V at Node #4. This is 
not surprising, because the T-V association is both frequent 
(note that it also occurs at Node #0) and consistent (i.e., the 
letter T is a relatively reliable cue to the occurrence of a 
subsequent V). Furthermore, V also benefits from its involve- 
ment in a TVT-V alternation in a number of cases. On Figure 
12, one can also see that T elicits a relatively fast response, 
even though it is ungrammatical at Node #4. This is a direct 
consequence of the fact that a T at Node #4 follows itself 
immediately. It is therefore primed despite its ungrammati- 
cality. The augmented SRN model captures both of these 
effects quite adequately, if not perfectly. 

The impact of the short-term priming effects is also appar- 
ent in the model's overall responses. For instance, the initial 
difference between grammatical and ungrammatical trials 
observed in the first session of both experiments is also present 

in the simulation data. In both cases, this difference results 
from the fact that responses to first-order repetitions (which 
are necessarily ungrammatical) were eliminated from the 
ungrammatical trials, whereas second-order repetitions and 
trials involved in alternations were not eliminated from the 
grammatical trials. Each of these two factors contribute to 
widen the difference between responses to grammatical and 
ungrammatical trials, even though learning of the sequential 
structure is only minimal at that point. The fact that the SRN 
model also exhibits this initial difference is a further indication 
of its aptness at accounting for the data. 

Attention and Sequence Structure 

Can the SRN model also yield insights into other aspects 
of sequence learning? A. Cohen et at. (1990) reported that 
sequence structure interacts with attentional requirements. 
Subjects placed in a choice reaction situation were able to 
learn sequential material under attentional distraction, but 
only when it involved simple sequences in which each element 
has a unique successor (such as in 12345 ...). More complex 
sequences involving ambiguous elements (i.e., elements that 
could be followed by several different successors, as in 
123132 . . . )  could only be learned when no secondary task 
was performed concurrently. A third type of sequencem 
hybrid sequences--in which some elements were uniquely 
associated to their successor and some other elements were 
ambiguous (such as in 143132 . . . )  elicited intermediate re- 
sults. A. Cohen et at. (1990) hypothesized that the differential 
effects of the secondary task on the different types of sequences 
might be due to the existence of two different learning mech- 
anisms: one that establishes direct pairwise associations be- 
tween an element of the sequence and its successor, and 
another that creates hierarchical representations of entire 
subsequences of events. The first mechanism would require 
less attentional resources than the second and would thus not 
suffer as much from the presence of a secondary task. A. 
Cohen et al. further point out that there is no empirical basis 
for distinguishing between this hypothesis and a second one, 
namely, that all types of sequences are processed hierarchi- 
cally, but that ambiguous sequences require a more complex 
"parsing" than unique sequences. Distraction would then 
have differential effects on these two kinds of hierarchical 
coding. 

We propose a third possibility: that sequence learning may 
be based solely on associative learning processes of the kind 
found in the SRN. 3 Through this learning mechanism, asso- 
ciations are established between prediction-relevant features 
of previous elements of the sequence and the next element. If 
two subsequences have the same successors, the model will 
tend to develop identical internal representations in each case. 

3 In work done independently of our simulations, J. K. Kruschke 
(personal communication, June 5, 1990) explored the possibility of 
simulating the effects of attention on sequence learning in SRNs. In 
one of his simulations, the learning rate of the connections from the 
context units to the hidden units was set to a lower value than for the 
other connections of the network. 
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If two otherwise identical subsequences are followed by dif- 
ferent successors as a function of their predecessors, however, 
the network will tend to develop slightly different internal 
representations for each subsequence. This ability of the net- 
work to simultaneously represent similarities and differences 
led us to refer to the SRN model as an instantiation of a 
graded state machine (McClelland, Cleeremans, & Servan- 
Schreiber, 1990). This notion emphasizes the fact that, al- 
though there is no explicit representation of the hierarchical 
nature of the material, the model nevertheless develops inter- 
hal representations that are shaded by previous elements of 
the sequence. 

The key point in the context of this discussion is that the 
representations of sequence elements that are uniquely asso- 
ciated with their successors are not different in kind from 
those of elements that can be followed by different successors 
as a function of their own predecessors. How, then, might the 
model account for the interaction between attention and 
sequence structure reported by A. Cohen et al. (1990)? One 
possibility is that the effect of the presence of a secondary task 
is to hamper processing of the sequence dements. A simple 
way to implement this notion in our model consists of adding 
normally distributed random noise to the input of specific 
units of the network (Cohen & Servan-Schreiber, 1989, ex- 
plored a similar idea by manipulating gain to model process- 
ing deficits in schizophrenia). The random variability in the 
net input of units in the network tends to disrupt processing, 
but in a graceful way (i.e., performance does not break down 
entirely). The intensity of the noise is controlled by a scale 
parameter, a. We explored how well changes in this parameter 
as well as changes in the localization of the noise captured the 
results of Experiment 4 of A. Cohen et al. (1990). 

A Simulat ion of  Attentional Effects in Sequence 
Learning 

In this experiment, subjects were exposed to 14 blocks of 
either 100 trials for the unique sequence (12345.. .)  condition 
or 120 trials for the ambiguous sequence (123132 . . . )  and 
hybrid sequence (143132.. .)  conditions. Half of the subjects 
receiving each sequence performed the task under attentional 
distraction (in the form of a tone-counting task); the other 
half only performed the sequence learning task. In each of 
these six conditions, subjects first received two blocks of 
random material (Blocks 1-2), followed by eight blocks of 
structured material (Blocks 3-10), then another two blocks of 
random material (Blocks 11-12), and a final set of two blocks 
of structured material (Blocks 13-14). The interesting com- 
parisons are between performance on the last two random 
blocks (Blocks 11-12), on the one hand, and on the four last 
structured blocks (Blocks 9-10 and 13-14), on the other hand. 
Any positive difference between the average RTs on these two 
groups of blocks would indicate interference when the switch 
to random material occurred, thereby suggesting that subjects 
have become sensitive to the sequential structure of the ma- 
terial. 

We have represented the standard scores of the six relevant 
RT differences in the left panel of Figure 13. When the 

sequence learning task is performed alone ("tingle" condi- 
tion), unique and hybrid sequences are better learned than 
ambiguous sequences, as indicated by the larger difference 
between random and structured material elicited by unique 
and hybrid sequences. The same pattern is observed when the 
sequence learning task is performed concurrently with the 
tone-counting task ("dual" condition), but overall perform- 
ance is much lower. In the actual data, the difference between 
random and structured material for the ambiguous sequence 
is very close to zero. In other words, the ambiguous sequence 
is not learned at all under dual-task conditions. The crucial 
point that this analysis reveals, however, is that learning of 
the unique and hybrid sequences is also hampered by the 
presence of the secondary task. 

To capture this pattern of results, an SRN with 15 hidden 
units was trained in exactly the same conditions as subjects 
in the study by A. Cohen et al. (1990). We recorded the 
response of the network to each stimulus and separately 
averaged these responses over the last random and structured 
blocks, as described above. These mean responses were then 
substrated from one and transformed into standard scores to 
allow for direct comparisons with the data. 

We explored three different ways of modeling the secondary 
task by means of noise. One consists of adding noise to the 
connections from the context units to the hidden units only. 
We found that this resulted in specific interference with 
acquisition of the ambiguous sequence. Basically, the network 
learns to ignore the noisy information coming from the 
context units and minimizes the error using the main proc- 
essing pathway only. However, this is not what is observed in 
the data: The presence of the secondary task also hampers 
learning of the unique and hybrid sequences. Therefore, we 
focused on two other ways of allowing noise to interfere with 
processing: adding noise to the net input of each unit of the 
network or adding noise to the net input of each hidden unit 
only. In both cases, activation propagating from the context 
units and from the input units to the rest of the network was 
affected equally. 

In a first simulation, the secondary task was modeled by 
adding normally distributed random noise (a = 0.7) to the 
net input of each unit in the network. The learning rates were 
set to 0.35 (slow E) and to 0.45 (fast ~). The values of the 
other parameters were identical to those used in our previous 
simulations. The results are illustrated in the middle panel of 
Figure 13. The response pattern produced by the network is 
quite similar to the human data. In particular, the noise (a) 
affected learning of all three types of sequences and (b) 
virtually eliminated learning of the ambiguous sequence. In- 
deed, the difference score for the ambiguous sequence was 
0.019 in the dual condition, only 1.9%. Thus, at this level of 
noise, learning of the ambiguous sequence is almost entirely 
blocked, as for subjects in the A. Cohen et al. (1990) study. 
By contrast, learning of the unique and hybrid sequences is 
relatively preserved, although the hybrid sequence was not 
learned as well by the model as by the subjects. 

The right panel of Figure 13 illustrates the results of a 
similar analysis conducted on a simulation using higher learn- 
ing rates (slow ~ = 0.7, fast c = 0.8) and in which noise (a = 
1.9) was only allowed to affect the net input to each hidden 
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Figure 13. Standard scores of human and simulated mean difference scores between responses on 
random and structured material, for unique, hybrid, and ambiguous sequences, and under single- or 
dual-task conditions. 

unit of the network. The figure shows that with these very 
different parameters, the model still captures the basic pattern 
of results observed in the data. The difference score for the 
ambiguous sequence in the dual condition was 0.023, again 
very close to zero. In contrast with the previous simulation, 
however, the hybrid sequence now appears to be learned as 
well as by human subjects. The ambiguous sequence, on the 
other hand, seems to be learned somewhat too well with this 
particular set of parameters. 

The important result is that both simulations produced an 
interference pattern qualitatively similar to the empirical data. 
We found that quite a wide range of parameter values would 
produce this effect. For instance, the basic pattern is preserved 
if the learning rates and the noise parameter are varied pro- 
portionally or, as our two simulations illustrate, if the noise 
is allowed to interfere with all the units in the network or 
with only the hidden units. This just shows that fitting simu- 
lated responses to empirical data ought to be done at a fairly 
detailed level of analysis. A precise, quantitative match with 
the data seems inappropriate at this relatively coarse level of 
detail. Indeed, there is no indication that exactly the same 
pattern of results would be obtained in a replication, and 
overtitting is always a danger in simulation work. The central 
point is that we were able to reproduce this pattern of  results 
by manipulating a single parameter in a system that makes 
no processing or representational distinction between unique, 
hybrid, and ambiguous sequences. 

To summarize, these results have two important implica- 
tions. First, it appears that the secondary task exerts similar 
detrimental effects on both types of sequences. Learning of 
ambiguous sequences is almost entirely blocked when per- 

formed concurrently with the tone-counting task. Unique and 
hybrid sequences can be learned under attentional distraction, 
but to a lesser extent than under single-task conditions. Both 
of these effects can be simulated by varying the level of noise 
in the SRN model. 

Second, our simulations suggest that unique and ambiguous 
sequences are represented and processed in the same way. 
Therefore, a distinction between associative and hierarchical 
sequence representations does not appear to be necessary to 
explain the interaction between sequence structure and atten- 
tion observed by A. Cohen et al. (1990). 

General  Discussion 

In Experiment 1, subjects were exposed to a six-choice 
serial reaction time task for 60,000 trims. The sequential 
structure of  the material was manipulated by generating suc- 
cessive stimuli on the basis of a small finite-state grammar. 
On some of the trials, random stimuli were substituted to 
those prescribed by the grammar. The results deafly support 
the idea that subjects become increasingly sensitive to the 
sequential structure of the material. Indeed, the smooth dif- 
ferentiation between grammatical and ungrammatical trials 
can only be explained by assuming that the temporal context 
set by previous elements of the sequence facilitates or inter- 
feres with the processing of the current event. Subjects pro- 
gressively come to encode more and more temporal context 
by attempting to optimize their performance on the next trial. 
Experiment 2 showed that subjects were relatively unable to 
maintain information about long-distance contingencies that 
span irrelevant material. Taken together, these results suggest 
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that, in this type of task, subjects gradually acquire a complex 
body of procedural knowledge about the sequential structure 
of the material. Several issues may be raised regarding the 
form of this knowledge and the mechanisms that underlie its 
acquisition. 

Sensitivity to the Temporal Context and Sequence 
Representation 

Subjects are clearly sensitive to more than just the imme- 
diate predecessor of the current stimulus; indeed, there is 
evidence of sensitivity to differential predictions based on two 
and even three elements of context. However, sensitivity to 
the temporal context is also clearly limited: Even after 60,000 
trials of practice, there is no evidence that subjects discrimi- 
nate between the different possible successors entailed by 
elements of the sequence four steps away from the current 
trial. The question of how much temporal context subjects 
may be able to encode has not been thoroughly explored in 
the literature, and it is therefore difficult to compare our 
results with the existing evidence. Remington (1969) demon- 
strated that subjects' responses in a simple two-choice reaction 
task were affected by elements as removed as five steps, but 
the effects were very small and did not depend on the sequen- 
tial structure of the material. Rather, they were essentially the 
result of repetition priming. Early studies by Millward and 
Reber (1968, 1972), however, documented sensitivity to as 
much as seven elements of temporal context in a two-choice 
probability learning paradigm that used structural material. 
In the Millward and Reber (1972) study, the sequences were 
constructed so that the event occurring on Trial t was contin- 
gent on an earlier event occurring at Trial t - L. The lag L 
was progressively increased from 1 to 7 over successive exper- 
imental sessions. The results indicated that subjects were 
slightly more likely to produce the contingent response on the 
trial corresponding to the lag than on any other trial, thereby 
suggesting that they encoded the contingency. A number of 
factors, however, make this result hard to generalize to our 
situation. First, subjects were asked to predict the next element 
of a sequence, rather than simply react to it. It is obvious that 
this requirement will promote explicit encoding of the se- 
quential structure of the material much more than in our 
situation. Second, the task only involved two choices, which 
is much fewer than the six choices used here. There is little 
doubt that detecting contingencies is facilitated when the 
number of stimuli is reduced. Third, the training schedule (in 
which the lag between contingent events was progressively 
increased over successive practice sessions) used in this study 
is also likely to have facilitated encoding of the long-distance 
contingencies. Finally, the differences in response probabili- 
ties observed by Millward and Reber (1972) were relatively 
small for the longer lags (for instance, they reported a .52 
probability of predicting the contingent event at Lag 7 vs..47 
for the noncontingent event). 

More recently, Lewicki et al. (1987), and also Stadler 
(1989), reported that subjects seemed to be sensitive to six 
elements of temporal context in a search task in which the 
location of the target on the seventh trial was determined by 

the locations of the target on the six previous trials. This result 
may appear to contrast with ours, but close inspection of the 
structure of the sequences used by Lewicki et al. (1987) 
revealed that 50% of the uncertainty associated with the 
location of the target on the seventh trial may be removed by 
encoding just three elements of temporal context. This could 
undoubtedly account for the facilitation observed by Lewicki 
et al. and is totally consistent with the results obtained here. 

In summary, none of the above studies provided firm 
evidence that subjects become sensitive to more than three or 
four elements of temporal context in situations that do not 
involve explicit prediction of successive events. It is interesting 
to speculate on the causes of these limitations. Long-distance 
contingencies are necessarily less frequent than shorter ones. 
However, this should not prevent them per se from becoming 
eventually encoded should the regularity-detection mecha- 
nism be given enough time and resources. A more sensible 
interpretation is that memory for sequential material is lim- 
ited and that the traces of individual sequence elements decay 
with time. More recent traces would replace older ones as 
they are processed. This notion is at the core of many early 
models of sequence processing (e.g., Laming, 1969). In the 
SRN model, however, sequence elements are not represented 
individually, and memory for context does not spontaneously 
decay with time. The model nevertheless has clear limitations 
in its ability to encode long-distance contingencies. The reason 
for these limitations is that the model develops representations 
that are strongly determined by the constraints imposed by 
the prediction task. That is, the current element is represented 
together with a representation of the prediction-relevant fea- 
tures of previous sequence elements. As learning progresses, 
representations of subsequences followed by identical succes- 
sors tend to become more and more similar. For instance, we 
have shown that an SRN with three hidden units develops 
internal representations that correspond exactly to the nodes 
of the finite-state grammar from which the stimulus sequence 
was generated (Cleeremans et al., 1989). This is a direct 
consequence of the fact that all the subsequences that entail 
the same successors (i.e., that lead to the same node) tend to 
be represented together. As a result, it also becomes increas- 
ingly difficult for the network to produce different responses 
to otherwise identical subsequences preceded by disambiguat- 
ing elements. In a sense, more distant elements are subject to 
a loss of resolution, the magnitude of which depends expo- 
nentially on the number of hidden units available for proc- 
essing (Servan-Schreiber et al., 1988). Encoding long-distance 
contingencies is greatly facilitated if each element of the 
sequence is relevant--even only in a probabilistic senseufor 
predicting the next one. Whether subjects also exhibit this 
pattern of behavior is a matter for further research. 

Awareness of the Sequential Structure 
It is often claimed that learning can proceed without explicit 

awareness (e.g., Reber, 1989; Willingham et al., 1989). How- 
ever, in the case of sequence learning, as in most other implicit 
learning situations, it appears that subjects become aware of 
at least some aspects of the structure inherent in the stimulus 
material. Our data suggest that subjects do become aware of 
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the alternations that occur in the grammar (e.g., SQSQ and 
VTVT in Experiment 1), but have little reportable knowledge 
of any other contingencies. The loops also produced marked 
effects on performance. Indeed, as Figure 12 illustrates, the 
greatest amount of facilitation occurs at Nodes #2 and #4, 
and for the letters involved in the loops (Q at Node #2 and V 
at Node #4). However, this does not necessarily entail that 
explicit knoweldge about these alternations played a signifi- 
cant role in learning the sequential structure of the material. 
Indeed, a great part of the facilitation observed for these letters 
results from the fact that they are subject to associative 
priming effects because of their involvement in alternations. 
Furthermore, our data contain many instances of cases in 
which performance facilitation resulting from sensitivity to 
the sequential structure was not accompanied by correspond- 
ing explicit knowledge. For instance, the results of the analysis 
on differential sensitivity to the successors of selected paths 
of length 3 (Experiment 1) dearly demonstrate that subjects 
are sensitive to contingencies they are unable to elaborate in 
their explicit reports. In other words, we think that awareness 
of some aspects of the sequential structure of the material 
emerges as a side effect of processing and plays no significant 
role in learning itself. As it stands, the SRN model does not 
address this question directly. Indeed, it incorporates no 
mechanism for verbalizing knowledge or for detecting regu- 
larities in a reportable way. However, the model implements 
a set of principles that are relevant to the distinction between 
implicit and explicit processing. For instance, even though 
the internal representations of the model are structured and 
reflect information about the sequence, the relevant knowl- 
edge is embedded in the connection weights. As such, this 
knowledge is relatively inaccessible to observation. By con- 
trast, the internal representations of the model may be made 
available to some other component of the system. This other 
component of the system may then be able to detect and 
report on the covariations present in these internal represen- 
tations, even though it would play but a peripheral role in 
learning or in processing. Even so, the internal representations 
of the model may be hard to describe because of their graded 
and continuously varying nature. 

Other aspects of the data support the view that explicit 
knowledge of the sequence played but a minimal role in this 
task. For instance, even though the results of the generation 
task, which followed training in Experiment 2, dearly indicate 
that subjects were able to use their knowledge of the sequence 
to predict the location of some grammatical events, overall 
prediction performance was very poor, particularly when 
compared with previous results. A. Cohen et al. (1990), for 
instance, showed that subjects were able to achieve near 
perfect prediction performance in as little as I00 trials. In 
stark contrast, our subjects were only able to correctly predict 
about 25% of the grammatical events after 450 trials of the 
generation task and 60,000 trials of training. This difference 
further highlights the complexity of our experimental situa- 
tion and suggests that the presence of the noise and the 
number of different possible grammatical subsequences make 
it very hard to process the material explicitly. This was cor- 
roborated by subjects' comments that they had sometimes 
tried to predict successive events, but had abandoned this 

strategy because they felt it was detrimental to their perform- 
ance. 

In short, these observations lead us to believe that subjects 
had very little explicit knowledge of the sequential structure 
in this situation and that explicit strategies played but a 
negligible role during learning. One may wonder, however, 
about the role of explicit recoding strategies in task settings as 
simple as those used by Lewicki et al. (1988) or A. Cohen et 
al. (1990). In both these situations, subjects were exposed to 
extremely simple repeating sequences of no more than six 
elements in length. But the work of Willingham et ai. (I 989) 
has demonstrated that a sizeable proportion of subjects placed 
in a choice reaction situation involving sequences of I0 ele- 
ments do become aware of the full sequence. These subjects 
were also faster in the sequence learning task and more 
accurate in predicting successive sequence elements in a fol- 
low-up generation task. By the same token, a number of 
subjects also failed to show any declarative knowledge of the 
task despite good performance during the task. These results 
highlight the fact that the relationship between implicit and 
explicit learning is complex and subject to individual differ- 
ences. Claims that acquisition is entirely implicit in simple 
sequence learning situations must be taken with caution. 

To summarize, although it is likely that some subjects used 
explicit recoding strategies during learning, the complexity of 
the material we usedmas well as the lack of improvement in 
the generation task--make it unlikely that they did so in any 
systemic way. Further experimental work is needed to assess 
in greater detail the impact of explicit strategies on sequence 
learning, using a range of material of differing complexity, 
before simulation models that incorporate these effects can 
be elaborated. 

Learning Mechanisms and Attention 

The augmented SRN model provides a detailed, mechanis- 
tic, and fairly good account of the data. Although the corre- 
spondence is not perfect, the model nevertheless captures 
much of the variability of human responses. 

The model's core learning mechanism implements the no- 
tion that sensitivity to the temporal context emerges as the 
result of optimizing preparation for the next event on the 
basis of the constraints set by relevant (i.e., predictive) features 
of the previous sequence. However, this core mechanism 
alone is not sufficient to account for all aspects of perform- 
ance. Indeed, as discussed above, our data indicate that in 
addition to the long-term and progressive facilitation obtained 
by encoding the sequential structure of the material, responses 
are also affected by a number of other short-term (repetitive 
and associative) priming effects. It is interesting to note that 
the relative contribution of these short-term priming effects 
tends to diminish with practice. For instance, an ungrammat- 
ical but repeated Q that follows an SQ- at Node #1 in 
Experiment 1 elicits a mean RT of 463 ms over the first 4 
sessions of training. This is much faster than the 540 ms 
elicited by a grammatical X that follows SQ-  at the same 
node. By contrast, this relationship becomes inverted in the 
last 4 sessions of the experiment: The Q now evokes a mean 
RT of 421 ms, whereas the response to an X is 412 ms. Thus, 
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through practice, the sequential structure of the material 
comes to exert a growing influence on response times and 
tends to become stronger than the short-term priming effects. 
The augmented SRN model captures this interaction in a 
simple way: Early in training, the connection weights under- 
lying sensitivity to the sequential structure are very small and 
can only exert a limited influence on the responses. At this 
point, responses are quite strongly affected by previous acti- 
vations and adjustments to the fast weights from preceding 
trials. Late in training, however, the contribution of these 
effects in determining the activation of the output units ends 
up being dominated by the long-term connection weights, 
which, through training, have been allowed to develop con- 
siderably. 4 

With both these short-term and long-term learning mech- 
anisms in place, we found that the augmented SRN model 
captured key aspects of sequence learning and processing in 
our task. Furthermore, the model also captured the effects of 
attention on sequence learning reported by A. Cohen et al. 
(1990). Even though ambiguous sequences are not processed 
by separate mechanisms in the SRN model, they are never- 
theless harder to learn than unique and hybrid sequences 
because they require more temporal context information to 
be integrated. So the basic difference between the three se- 
quence types is produced naturally by the model. Further- 
more, when processing is disturbed by means of noise, the 
model produces an interference pattern very similar to that 
of the human data. Presumably, a number of different mech- 
anisms could produce this effect. For instance, Jennings and 
Keele (1990) explored the possibility that the absence of 
learning of the ambiguous sequence under attentional distrac- 
tion was the result of impaired "parsing" of the material. They 
trained a sequential back-propagation network (Jordan, 1986) 
to predict successive elements of a sequence and measured 
how the prediction error varied with practice under different 
conditions and for different types of sequences. The results 
showed that learning of ambiguous sequences progressed 
much slower than for unique or hybrid sequences when the 
input information did not contain any cues as to the structure 
of the sequences. By contrast, learning of ambiguous se- 
quences progressed at basically the same rate as for the other 
two types of sequences when the input to the network did 
contain information about the structure of the sequence, such 
as the marking of sequence boundaries or an explicit repre- 
sentation of its subparts. If one assumes that attention is 
required for this explicit parsing of the sequence to take place 
and that the effects of the secondary task is to prevent such 
mechanisms from operating, then indeed learning of the 
ambiguous sequence will be hampered in the dual-task con- 
dition. However, the data seem to indicate that learning of 
the unique and hybrid sequences is also hampered by the 
presence of the secondary task. One would therefore need to 
know more about the effects of parsing on learning of the 
unique and hybrid sequences. Presumably, parsing would also 
facilitate processing of these kinds of sequences, although to 
a lesser extent than for ambiguous sequences. 

In the case of the SRN model, we found that specifically 
interfering with processing of the ambiguous sequence by 
adding noise to the connections from the context units to the 

hidden units would not produce the observed data. On the 
contrary, our simulations indicate that the interference pro- 
duced by the secondary task seems to be best accounted for 
when noise is allowed to equally affect processing of infor- 
mation coming from the context units and information com- 
ing from the input units. Therefore, it appears that there is 
no a priori need to introduce a theoretical distinction between 
processing and representation of sequences that have a hier- 
archical structure and sequences that do not. Naturally, we 
do not mean to suggest that sequence learning never involves 
the use of explicit recoding strategies of the kind suggested by 
A. Cohen et al. (1990) and by Jennings and Keele (1990). As 
pointed out earlier, it is very likely indeed that many sequence- 
learning situations do in fact involve both implicit and explicit 
learning and that recording strategies play a significant role 
in performance. Further research is needed to address this 
issue more thoroughly. 

Conclusion 

Subjects placed in a choice reaction time situation acquire 
a complex body of procedural knowledge about the sequential 
structure of the material and gradually come to respond on 
the basis of the constraints set by the last three elements of 
the temporal context. It appears that the mechanisms under- 
lying this progressive sensitivity operate in conjunction with 
short-term and short-lived priming effects. Encoding of the 
temporal structure seems to be primarily driven by anticipa- 
tion of the next element of the sequence. A PDP model that 
incorporates both of these mechanisms in its architecture was 
described and found to be useful in accounting for key aspects 
of acquisition and processing. This class of model therefore 
appears to offer a viable framework for modeling uninten- 
tional learning of sequential material. 

4 As Soetens, Boer, and Hueting (1985) have demonstrated, how- 
ever, short-term priming effects also tend to become weaker through 
practice even in situations that only involve random material. At this 
point, the SRN model is simply unable to capture this effect. Doing 
so would require the use of a training procedure that allows the time 
course of activation to be assessed (such as cascaded back-propaga- 
tion; see J. D. Cohen, Dunbar, & MeClelland, 1990) and is a matter 
for further research. 
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