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1. Introduction

While the study of implicit learning is nothing new, the field as a whole has come to

embody — over the last decade or so — ongoing questioning about three of the most

fundamental debates in the cognitive sciences: The nature of consciousness, the nature

of mental representation (in particular the difficult issue of abstraction), and the role

of experience in shaping the cognitive system. Our main goal in this chapter is to offer

a framework that attempts to integrate current thinking about these three issues in a

way that specifically links consciousness with adaptation and learning. Our

assumptions about this relationship are rooted in further assumptions about the nature

of processing and of representation in cognitive systems. When considered together,

we believe that these assumptions offer a new perspective on the relationships

between conscious and unconscious processing and on the function of consciousness

in cognitive systems.

To begin in a way that reflects the goals of this volume, we can ask the question:

“What is implicit learning for?” In asking this question, one presupposes that implicit

learning is a special process that can be distinguished from, say, explicit learning or,

even more pointedly, from learning tout court. The most salient feature attributed to

implicit learning is of course that it is implicit, by which most researchers in the area

actually mean unconscious. Hence the question "What is implicit learning for?" is in

fact a way of asking about the function of consciousness in learning that specifically

assumes that conscious and unconscious learning have different functions. The central

idea that we will develop in this chapter is that conscious and unconscious learning

are actually two different expressions of a single set of constantly operating graded,

dynamic processes of adaptation. While this position emphasizes that conscious and

unconscious processing differ only in degree rather than in kind, it is nevertheless not

incompatible with the notion that consciousness has specific functions in the cognitive

economy.

Indeed, our main conclusion will be that the function of consciousness is to offer

flexible adaptive control over behavior. By adaptive here, we do not mean simply the

possibility for an agent to select one course of action among several possibilities.

This, as dozens of computer programs routinely demonstrate, can be achieved without

consciousness. Instead, we assume that genuine flexibility necessarily involves

phenomenal consciousness (subjective experience), to the extent that successful

adaptation in cognitive systems seems to make it mandatory that behavioral changes

be based on the rewarding or punishing qualia they are associated with. There would
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be no point, for instance, in avoiding dangerous behavior were it not associated with

feelings of danger. Learning is thus necessarily rooted, we believe, in the existence of

at least some primitive ability for the cognitive agents to experience the consequences

of their behavior and to recreate these experiences independently of action. These

primitive experiences can then, through more elaborate learning and developmental

processes, become integrated into increasingly complex structures that include

representations of the self, that is, into a set of representations and processes that

enable an agent to entertain a third-person perspective on itself, or, in other words, to

look upon itself as though it were another agent. We surmise that any information-

processing system that is sufficiently complex to make such processes possible should

be characterized as conscious — albeit we may never find out unless this system

exhibits the only sort of consciousness that we know of first-hand, that is, human

consciousness. We will not discuss this important epistemic debate any further short

of noting (1) that it actually is what the Turing Test is about (see French, 2000, for

further discussion of the Turing Test), and (2) that it is perfectly possible to develop

simulations of some behavior that successfully mimics adaptation without requiring

qualia, but then, presumably, only at a level of description that would fail to pass more

elaborate testing.

Our primary goal in this chapter will thus be to outline a novel framework with

which to think about the relationships between learning and consciousness.  In section

2, we propose to define learning as “a set of philogenetically advanced adaptation

processes that critically depend on an evolved sensitivity to subjective experience so

as to enable agents to afford flexible control over their actions in complex,

unpredictable environments”. We continue by discussing the implications of such a

definition of learning on current debates about (1) the nature of phenomenal

experience (section 3) and about (2) the functions of consciousness in cognitive

systems (section 4). In section 5, we turn to an overview of our own proposal, and

continue by briefly illustrating how our framework can be used to understand diverse

phenomena in domains such as priming, implicit learning, automaticity and skill

acquisition, or development (section 6). We conclude the chapter (section 7) by

considering issues that the framework does not address. We should add that this

chapter is by no means intended to offer a complete overview of all relevant

phenomena and theories, but rather to convey the flavor of what we believe to be an

alternative framework in which to consider some of the central issues in the domain of

implicit learning.
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2. Adaptation, adaptive changes, and learning

Mounting evidence suggests not only that the brain is far more plastic than previously

thought, but also that the effects of learning can be tracked all the way down to the

organization of local connectivity.  To wit: Expert string players exhibit larger-than-

normal areas of the somatosensory cortex dedicated to representing input from the

fingering digits (Elbert et al., 1995). Likewise, not only is posterior hippocampus, — a

region of the brain involved in episodic and spatial memory — enlarged in

experienced taxi drivers compared to subjects who do not have extensive experience

in memorizing complex maps, but the observed size differences further depend on the

amount of driving experience (Maguire et al., 2000). There is also considerable

evidence that the brain can recover in various flexible ways after trauma, and even

suggestions that the very organization of the somatosensory cortex (the famous

Penfied homonculus) depends on pre-natal sensory experience (Farah, 1998). More

recently, suggestive evidence for neurogenesis was also found in humans (Eriksson et

al., 1998) — a finding that overturned decades of unquestioned — but, as it turns out,

erroneous — assumptions about the lack of regenerative cellular processes in the adult

brain. These often spectacular findings all reassert that adaptation plays a fundamental

role in cognition, and that its effects can be traced all the way down to the manner in

which specific neural circuits are organized.

Given this plethora of new findings hinting that the brain constantly adapts to the

environment that it is immersed in, what can we say about the relationships between

learning and consciousness? Should we consider processes of adaptation in general to

be distinct from processes of learning? Is it the case, as some authors contend (see

Perruchet & Vinter, this volume; Shanks & St. John, 1994) that learning is always

accompanied by conscious awareness? One can ask the question in another way: Why

should behavior always be available to conscious control? It might seem particularly

adaptive for complex organisms to be capable of behavior that does not require

conscious control, for instance because behavior that does not require monitoring of

any kind can be executed faster or more efficiently than behavior that does require

such control. Reflexes such as withdrawing one's hand from a fire are good instances

of behaviors that have presumably evolved to the point that they have been

incorporated in the functional architecture of an organism's central nervous system

and cannot be controlled any longer (or perhaps, only with extensive training on self-

control techniques).
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The relative accessibility of different actions to conscious awareness suggests that

an important distinction between adaptation in general and learning is, precisely, the

extent to which consciousness accompanies each. Learning, according to many

standard definitions (e.g., Anderson & Memory, 1995; Klein, 1991; Tarpy, 1997),

constitutes a subset of philogenetically advanced adaptation processes that are

characteristic of so-called “cognitive systems”, and through which relatively

permanent and generally adaptive changes in the behavior or dispositions of the

organism arise as the result of their previous "experiences" with the environment in

which they are immersed. From such a definition, it follows that the distinction

between learning phenomena and the superordinate class of adaptation phenomena to

which they belong depends on the “cognitive” status of the systems in which such

learning occurs, and on the ability of these systems to enjoy a particular kind of

sensitivity — "experience". Thus, however many reasons there might be to consider

adaptation and learning as fundamentally rooted in the same mechanisms, we do not

think that learning can simply be equated with adaptation. Adaptation, indeed, is a

very broad concept. When taken to its limit, it might be used to refer to any dynamic

relationship between an object and its environment through which (1) the object

changes its states and dispositions (2) as a result of its prior sensitivity to the

environment and (3) in a way that continuously modifies this sensitivity. It should be

clear that by this definition, even inanimate objects such as rocks, thermostats or

computer programs all exhibit patterns of adaptation. Indeed, erosion in rocks, the

switch of a relay in a thermostat, or the occurrence of specific digital states in

computers, can all be characterized as adaptive “responses” to changing

environmental conditions, to the extent that they modify the systems’ future

sensitivity to the reoccurrence of the same environmental conditions. In living

systems, these processes of adaptation are further subject to continuous evolution on a

species basis through the laws of natural selection.

Is it reasonable to consider such processes as processes of learning? Consider again

standard definitions of learning. What, exactly, in these definitions, does “experience”

refers to? Should our “experiences” as human beings be considered as similar to those

of stones and amoebas? Certainly not. However, the literature about learning is in

general conspicuously prone to conflate the term "experience" with any other kind of

phenomenally neutral sensitivity that produces relatively permanent and adaptive

changes in the responses of a system. For instance, even though neither machines nor

neurovegetative systems are generally considered to be endowed with subjective

experience, there is at least one journal that is entirely devoted to "Machine Learning".

It is also relatively easy to find articles in psychological journals in which the changes
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produced in our neurovegetative systems in response to their environment are

analyzed as examples of learning (e.g., Ader & Cohen, 1985).

While this conflation between “experience” and “mere sensitivity” has had the

merit of emphasizing that there is a continuity between the processes of change that

occur in different natural or artificial systems, it also blurs the distinction between

learning and adaptation phenomena in general. In so doing, it has also further

contributed to doing away with the distinction between cognitive and non-cognitive

systems. Dennett (1996), in particular, has made this conflation completely explicit by

assuming that the differences between cognitive and non-cognitive systems (e.g.,

between most animals and plants) might only be in the eye of the beholder. Indeed,

according to Dennett, the main difference between animals and plants is that we tend

to adopt an intentional stance when analyzing animals’ behavior, but do not do so

when it comes to understand the dynamics of plant adaptation. As he boldly puts it,

there is no reason to dispute the claim that plants should be considered as extremely

slow animals whose "experiences" are overlooked because of our “temporal scale”

chauvinism (Dennett, 1996), or that libraries should be taken as cognitive systems that

use researchers as tools to reproduce themselves (Dennett, 1991).

While this conclusion strikes many of us as bluntly absurd, perhaps its absurdity

should be taken as an indication that we need to revisit the notion of “experience” and,

in so doing, attempt to carefully delineate what it entails. Indeed, if learning is a

fundamental element of what it takes for a system to be “cognitive” (e.g., Dretske,

1988), it might also be the case that the nature of the phenomenal states upon which

learning operates is essential to distinguish it from other processes of adaptation. This

analysis thus forces us to look into the nature of phenomenal experience in some

detail. That is what we attempt to do in the next section.

3. Consciousness

What is consciousness? While it would be foolish to even attempt to answer this

question in this chapter, it might nevertheless be useful to offer guidelines about the

sorts of explanations we are looking for, and about which of these are relevant to the

study of implicit learning. In the following, we briefly discuss three aspects of

consciousness that often tend to be overlooked in discussions of implicit learning: The

fact that consciousness is not a unitary phenomenon, the fact that consciousness is

graded, and the fact that consciousness is dynamic.
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First, consciousness is not a unitary concept, but instead includes different

dimensions. Block (1995), for instance, distinguishes between access consciousness,

phenomenal consciousness, monitoring consciousness and self consciousness.

Everybody agrees that the most problematic aspect of consciousness is phenomenal

consciousness, or subjective experience, that is, the fact that information processing is

accompanied by qualia — elements of conscious imagery, feelings or thoughts that

together appear in our mind to form a coherent impression of the current state of

affairs.

In the specific context of research about implicit learning, the central question is

thus: Can changes in behavior occur without correlated changes in subjective

experience, and are these changes best characterized as mere adaptation or as

learning? This, at it turns out, is also one of the central questions in the ongoing

“search for the neural correlates of consciousness” that has been the focus of so much

recent empirical research about consciousness in the cognitive neurosciences. In an

excellent overview, Frith, Perry and Lumer (1999) have suggested to organize

paradigms through which to study the “neural correlates of consciousness” in nine

groups resulting from crossing two dimensions: (1) three classes of psychological

processes involving respectively knowledge of the past, present, and future —

memory, perception, and action —, and (2) three types of cases where subjective

experience is incongruent with the objective situation — cases where subjective

experience fails to reflect changes in either (1) the stimulation or in (2) behavior, and

(3) cases where subjective experience changes whereas stimulation and behavior

remain constant.

 The paradigmatic example of the third situation is binocular rivalry, in which an

unchanging compound stimulus consisting of two elements each presented separately

and simultaneously to each eye produces spontaneously alternating complete

perceptions of each element. By asking participants to indicate which stimulus they

perceive at any moment, one can then hope to establish which regions of the brain

exhibits activity that correlates with subjective experience and which do not, in a

situation where the actual stimulus remains unchanged. Frith et al. go on by

delineating many other relevant empirical paradigms involving both normal subjects

as well as patients suffering from a variety of neuropsychological syndromes. While

reviewing these different paradigms in detail goes far beyond the scope of this

chapter, it is interesting to note that implicit learning, in their analysis, constitutes one

example of cases where subjective experience remains constant while behavior

changes. The study of implicit learning is thus highly relevant to the study of

consciousness in general.
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In addition to the well-known difficult challenges involved in designing empirical

paradigms suitable for the exploration of differences between conscious and

unconscious processing (see Cleeremans, 1997 for an overview of these issues), the

study of consciousness also notoriously involves a great deal of conceptual issues. In

this respect, it is worth pointing out that current theories of consciousness indeed

make sometimes very contrasted assumptions about its underlying mechanisms. For

instance, Farah (1994) proposed to distinguish between three types of neuroscientific

accounts of consciousness: “Privileged Role” accounts, “Integration” accounts, and

“Quality of Representation” accounts. “Privileged Role” accounts take their roots in

Descartes’ thinking and assume that consciousness depends on the activity of specific

brain systems whose function it is to produce subjective experience. “Integration”

accounts, in contrast, assume that consciousness only depends on processes of

integration through which the activity of different brain regions can be synchronized

or made coherent so as to form the contents of subjective experience. Finally,

“Quality of Representation” accounts assume that consciousness depends on

particular properties of neural representations, such as their strength or stability in

time.

In a recent overview article (Atkinson, Thomas, & Cleeremans, 2000, see also

O'Brien & Opie, 1999), we proposed to organize computational theories of

consciousness along two dimensions: (1) A   process   vs.   representation   dimension,

which opposes models that characterize consciousness in terms of specific processes

operating over mental representations, with models that characterize consciousness in

terms of intrinsic properties of mental representations, and (2) A   specialized   v s  .

non     -    specialized    dimension, which contrasts models that posit information-processing

systems   dedicated   to consciousness with models for which consciousness can be

associated with any information-processing system as long as this system has the

relevant properties. Farah’s three categories can be subsumed in this analysis in the

following manner: “Privileged Role” models, which assume that some brain systems

play a specific role in subtending consciousness, are specialized models that can be

instantiated either through vehicle or through process principles. “Quality of

Representation”, models, on the other hand, are typical vehicle theories in that they

emphasize that what makes some representations available to conscious experience

are properties of those representations rather than their functional role. Finally,

Farah’s “Integration” models are examples of non-specialized theories, which can

again be either instantiated in terms of the properties of the representations involved

or in terms of the processes that engage these representations.
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Atkinson et al.’s analysis thus offers four broad categories of computational

accounts of consciousness:

(1)    Specialized vehicle theories  , which assume that consciousness depends on the

properties of the representations that are located within a specialized system in

the brain. An example of such accounts is Atkinson and Shiffrin’s (Atkinson

& Shiffrin, 1971) model of short-term memory, which specifically assumes

that representations contained in the short-term memory store (a specialized

system) only become conscious if they are sufficiently strong (a property of

representations).

(2)    Specialized process theories  , which assume that consciousness arises from

specific computations that occur in a dedicated mechanism, as in Schacter’s

CAS (Conscious Awareness System) model (Schacter, 1989). Shacter’s model

indeed assumes that the CAS’s main function is to integrate inputs from

various domain specific modules and to make this information available to

executive systems. It is therefore as specialized model in that it assumes that

there exist specific regions of the brain whose function it is to make its

contents available to conscious awareness. It is a process model to the extent

that any representation that enters the CAS will become available to conscious

awareness in virtue of the processes that manipulate these representations, and

not in virtue of properties of those representations themselves.

(3)     Non-specialized vehicle theories   include any model that posits that availability

to consciousness only depends on properties of representations, regardless of

where in the brain these representations exist. O’Brien & Opie’s

“connectionist theory of phenomenal experience” (O'Brien & Opie, 1999) is

the prototypical example of this category, to the extent that it specifically

assumes that any stable neural representation will both be causally efficacious

and form part of the contents of phenomenal experience.

(4)     Non-specialized process theories  , finally, are theories in which it is assumed

that representations become conscious whenever they are engaged by certain

specific processes, regardless of where these representations exist in the brain.

Most recent proposals fall into this category. Examples include Tononi and

Edelman’s “dynamic core” model (Tononi & Edelman, 1998); Crick and

Koch’s idea that synchronous firing constitutes the primary mechanisms

through which disparate representations become integrated as part of a unified

conscious experience (Crick & Koch, 1995), or Grossberg’s characterization
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of consciousness as involving processes of “resonance” through which

representations that simultaneously receive bottom-up and top-down

activation become conscious because of their stability and strength

(Grossberg, 1999).

While most recent neuro-computational models of consciousness fall into the last

category, several proposals also tend to be somewhat more hybrid, instantiating

features and ideas from several of the categories described by Atkinson et al. Baars'

influential "Global Workspace" model (Baars, 1988), for instance, incorporates

features from specialized process models as well as from non-specialized vehicles

theories, to the extent that the model assumes that consciousness involves a

specialized system (the global workspace), but also characterizes conscious states in

terms of the properties associated with their representations (i.e. global influence and

widespread availability) rather than in terms of the processes that operate on these

representations. Likewise, Dehaene and Naccache’s recent “neural workspace”

framework (Dehaene & Naccache, 2001) assumes that consciousness depends (1) on

the existence of a distributed system of long-range connectivity that links many

different specialized processing modules in the brain, and (2) on the simultaneous

bottom-up and top-down activation of the representations contained in the linked

modules. Thus, this model acknowledges both the existence of specific, dedicated

mechanisms to support consciousness as well as the specific properties of

representations (e.g., their strength or stability) brought about by specific processes

(e.g., resonance).

These various tentative accounts of the neural or computational mechanisms of

consciousness are highly relevant to the study of implicit learning because any theory

of the mechanisms through which implicit learning occurs necessarily also has to

make corresponding assumptions about the mechanisms of consciousness. As we shall

see in section 4,  however, most existing theories of implicit learning tend to be rather

mute about their implications with respect to the study of consciousness. Indeed, most

of the debate in the psychological literature about the relationships between conscious

and unconscious processing has been dedicated to addressing methodological rather

than conceptual issues. While these methodological debates are of central importance,

we also believe that addressing the conceptual issues is essential.

A second central aspect of conscious experience — and one that is also particularly

relevant for behavioral studies of implicit cognition, is that consciousness is not an all-

or-none process or property, but that it affords many degrees and components.

Conscious experience, however unified it appears to us, is not a single thing. Any
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theory of consciousness therefore has to answer questions about how the various

elements of conscious experience are integrated with each other so as to form a

unified whole, and about how to best think about the relative complexity of different

sorts of conscious experiences. In other words: How does one go from the simple

experiences that a snail might enjoy of its surroundings to the considerably more

complex experience produced by your reading these words? How does one account

for the differences between the sort of consciousness that infants undoubtedly possess

to the sort of verbally rich consciousness that adults enjoy? Process and vehicle

theories of consciousness make very different assumptions about these questions. For

O’Brien & Opie (1999), for instance, the graded character of conscious experience is

readily accommodated by vehicle theories, to the extent that properties of

representations such as strength or stability in time can easily be mapped onto

corresponding degrees or components of conscious awareness. This mapping is

somewhat more delicate for what we have called process theories, even though at first

sight they appear to offer an appealing set of conceptual principles with which to

understand how conscious experience can increase in complexity through

development or learning.

Dienes & Perner (1999) have recently pursued this goal in their theory of explicit

and implicit knowledge, and “higher-order thought” (HOT) theories of consciousness

in general can be described as relying on this principle (e.g., Rosenthal, 1986, 1997).

However, what is harder to accept from such accounts of subjective experience is that

its phenomenal character could be brought about in the first place from a series of

computational processes performed on otherwise non-phenomenal representations.

Indeed, and however much one might disagree with the specific way in which this

thought experiment was framed, Searle’s Chinese Room argument showed us twenty

years ago that the phenomenal properties of experience just seem not to be the sort of

stuff that one might expect to obtain by mere shuffling of formal representations or

symbols, no matter how convoluted, recurrent, or complex the relation among these

symbols may turn out to be (Searle, 1980; 1992; 1999). Neither semantics nor

phenomenal experience can emerge out of syntax. Symbols need to be grounded.

Hence, if this intuition is right, a pure process theory could never tell us the last word

in accounting for the first principles of consciousness.

Vehicle theories, it therefore appears, appear to be the best candidates to account

for the emergence of the first elements of subjective experience which, through

processes of learning, development and socialization, subsequently provide the

appropriate foundations for the emergence of more elaborated forms of consciousness.

It must be made clear at this point that by "vehicle theories" we refer to any theory



Implicit learning: A graded, dynamic perspective
12

that assumes that experience is not merely a relational or syntactic property that could

be realized through any representational vehicle, but that claim instead that experience

arises in a specific medium (e.g., neural) and as a result of processes that are proper to

this medium1.

For the sake of discussion, let us simply accept that phenomenal experience arises

as the result of some neural processes. What, then, might be the functions fulfilled by

phenomenal experience? What is it about experience that makes it play a special role

in distinguishing between learning and mere adaptation? These questions are in fact

questions about a third aspect of consciousness, that is, its dynamical character. Most

discussions of consciousness tend to analyze it as a static property of some processes

or representational states. However, it is obvious that consciousness is a phenomenon

that is highly dynamical: What I am aware now I might be unaware of at the next

moment. Likewise, what I am aware of at some point in time when learning a new

skill is not identical with what I will be aware of after I have mastered the skill. Thus,

we therefore believe that processes of change are central to our understanding of

consciousness, and that an analysis of its possible functions should therefore be rooted

in an analysis of the role that learning and adaptation play in shaping action.

4. The function of consciousness: Commander Data meets the Zombies

The findings briefly overviewed at the beginning of section 2 raise the question of

what the role of consciousness might be in adaptation and learning. We concluded that

a significant difference between adaptation and learning is whether or not

consciousness is involved. In this section, we attempt to reflect upon the function that

consciousness might have in information processing. In so doing, we suggest that

most existing theories of the relationships between conscious and unconscious

processing have simply failed to give consciousness a clear functional role.

In a recent overview article, Dehaene and Naccache (2001) conclude that “The

present view associates consciousness with a unified neural workspace through which

many processes can communicate. The evolutionary advantages that this system

confers to the organism may be related to the increased independence that it affords.”

(p. 31). Dehaene and Naccache thus suggest that consciousness allows organisms to

free themselves from acting out their intentions in the real world, relying instead on

less hazardous simulation made possible by the neural workspace. While we certainly

agree with this conclusion, it begs the question of how consciousness came to play

these functions in the first place. Are there any adaptive or evolutionary causes that
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would favor the emergence of unifying control systems characterized by conscious

states, and that could go beyond what local adaptive processes can do by forcing large

parts of the nervous system to work together in a coherent direction for some fractions

of seconds? How can these coherent, resonant, synchronous, reverberant, or otherwise

conscious states of the system come to reflect the most adaptive representation of the

current situation, given that “what is most adaptive” continuously changes?

As discussed by Perruchet and Vinter (this volume), the answers to these questions

are intimately related to the dynamics between learning and consciousness: On the

one hand, phenomenal consciousness provides the cognitive system with an adapted,

global representation of the current situation so that learning mechanisms operate on

the best possible representations. On the other hand, learning changes these

representation in increasingly adaptive ways. From this perspective then, the central

function of consciousness is to offer flexible, adaptive control over behavior.

This complex, dynamical relationship between consciousness and learning has,

however, often tended to be overlooked in classical models of cognition. As argued in

Cleeremans (1997) and also in Jiménez and Cleeremans (1999), this is most likely due

to the fact that classical models of cognition (the “Computational Theory of Mind”,

see Fodor, 1975) take it as a starting point that cognition is symbol manipulation. As

we will try to highlight in the next few paragraphs, we surmise that one takes

cognition to be exclusively and exhaustively about symbol manipulation, then there

are but a few conceptual possibilities with which to think about differences between

conscious and unconscious states.

Cognitive scientists concerned with the relation between consciousness and

cognition generally tend to oscillate between two extreme (and admittedly caricatural)

positions, which we have dubbed “Commander Data” and “Zombie” theories of

cognition. Star Trek’s character Data is an android whose bodily and cognitive

innards are fully transparent to himself. Except in rare circumstances (which

systematically tend to be described as the result of some sort of dysfunction), Data is

thus capable of describing in uncanny detail each and every aspect of its internal

states: How much force he is applying when attempting to pry open a steel door, how

many circuits are currently active in his positronic brain,  or the number of times over

the last ten years he smelled a particular scent, and in which circumstances he did so,

etc. Commander Data theorists likewise assume that cognition is fully transparent,

that is, (1) that whatever knowledge is expressed through behavior is also

transparently available to introspection, and (2) that consciousness reigns supreme and

allows access, with sufficient effort or attention, to all aspects of our inner lives. This
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perspective is what Broadbent described as the “common sense” view of cognition,

according to which “people act by consulting an internal model of the world, a

database of knowledge common to all output processes, and manipulating it to decide

on the best action” (Broadbent, Fitzgerald, & Broadbent, 1986, p. 77).

In contrast, the famed philosophical zombies (Chalmers, 1996) are perfectly

opaque, and in this sense instantiate absolutely implicit beings: Whatever internal

knowledge currently influences their behavior can neither be explicit nor conscious

because, by definition, they lack conscious experience. Zombie theorists thus take it

as a starting point that consciousness has an epiphenomenal character: There is a

zombie within you and, while you may not be aware of its existence, it could in fact

be responsible for most of your actions. It is capable of processing all the information

you can process in the same way that you do, with one crucial difference: “All is dark

inside” (Chalmers, 1996, p. 96); your zombie is unconscious. From this perspective

then, cognition is inherently opaque, and consciousness, when present, offers but a

very incomplete and imperfect perspective on internal states of affairs.

Needless to say, both of these perspectives are profoundly unsatisfactory. On the

one hand, Zombie perspectives (ZP) ascribe no role whatsoever to consciousness in

information processing, threaten to rob us of free will, and — because it is absurd to

deny consciousness altogether — are ultimately forced to assume the existence of

equally powerful conscious and unconscious systems. On the other hand, Commander

Data perspectives (CDP), by assuming that all of cognition is conscious, paradoxically

likewise depict consciousness as epiphenomenal. Crucially, both perspectives assume

that consciousness does not change cognition in any principled way, and hence that

consciousness plays no functional role   beyond that of a epiphenomenon that

accompanies either a functionally redundant subset of (ZP) or all (CDP) cognitive

events.

On the face of the deeply counterintuitive flavor of both perspectives, it seems

surprising to see that the past few years have witnessed the appearance of several

broad theoretical proposals that intentionally or inadvertently endorse either of these

perspectives. Some of these proposals are based on empirical evidence, and argue that

there is in fact no evidence for unconscious influences in cognition. Thus for instance,

Holender (1986), based on an extensive review of the subliminal perception literature,

found no evidence for the existence of unconscious priming. Holender (1992) further

proposed that many congruency effects observed in priming experiments can be

accounted by conflicts between conscious contents, that is, without appealing to the

effects of unconscious influences. Likewise, Shanks and StJohn (1994), expanding on
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the perspective offered by Brewer (1976), concluded their target article dedicated to

implicit learning by the statement that “Human learning is almost invariably

accompanied by conscious awareness” (p. 394).

Other proposals are more conceptual in nature. For instance, O’Brien and Opie

(O'Brien & Opie, 1999) propose that the contents of phenomenal consciousness

include all stable neural states, and that it is only those stable states that are “causally

efficacious”, that is, susceptible to influence further processing and, ultimately,

behavior. Perruchet and Vinter (1998, this volume), consider that unconscious

influences on behavior should be ascribed exclusively to noncognitive, neural

processes and state that “Mental life […] is co-extensive with consciousness”

(Perruchet, personal communication, see also Dulany, 1997). Finally, Dienes and

Perner’s (1999) recent “theory of implicit and explicit knowledge”, while carefully

delineating the various ways in which knowledge can be cast as implicit or explicit,

also seems to take it as a starting point that causally efficacious knowledge is always

explicit   in some sense   , that is, at least at the specific level that is needed to account for

the observed behavioral effects, and hence ends up, we believe, inadvertently painting

a picture of cognition in which the implicit again plays no functional role in cognition.

It should be pointed out that if the emphasis of these theories on the "transparent"

character of cognition can be seen as a normal swing of the conceptual pendulum,

there is nevertheless something paradoxical about the emergence of such proposals at

a time when the importance of unconscious processing in cognition finally appears to

have gained some form of recognition in dozens of articles, books and conferences.

The debate, we believe, is not so much rooted in equivocal empirical findings, but

rather in the deep conceptual problems associated with the notion of unconscious

representation. Hence, defenders of the claim that cognition can be unconscious often

succumb to some version of the ZP, while defenders of the opposite view can often be

taken to endorse some variant of the CDP. Crucially, we believe that both these

general frameworks are in fact based on the classical assumption that   cognition

involves symbol manipulation   , and hence that their only way to separate conscious

from unconscious cognition is to assume that unconscious cognition is just like

conscious cognition, but only minus consciousness (Searle, 1992).

In the next section, we would like to sketch out an alternative, subsymbolic,

framework through which to think about the relationship between learning and

consciousness — one that we believe offers a clear function to consciousness by
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linking it with adaptability in cognitive systems, while at the same time leaving open

the possibility for adaptive changes to occur without consciousness.

5. The framework

If our central assumption that the function of consciousness is to offer adaptive

control over behavior is correct, then consciousness is necessarily closely related to

processes of learning, because one of the central consequences of successful

adaptation is that conscious control is no longer required over the corresponding

behavior. We therefore believe that it makes sense to root accounts of consciousness

in accounts of how change occurs in cognitive systems.

Like Perruchet & Vinter (this volume), we assume that there is a dynamic

relationship between consciousness and learning such that (1) awareness of a

particular state of affairs triggers learning and (2) that this learning in turn changes the

contents of subjective experience so as to make these contents more adapted.

However, and this is an important departure from Perruchet & Vinter’s framework,

we also assume that learning has additional obligatory indirect effects that can fail to

enter awareness. In other words, learning is not just about modifying conscious

experience, as Perruchet & Vinter seem to assume. Thus, when I learn about cats, I

also indirectly learn about dogs and other animals, because the corresponding

representations are all linked together by virtue of being embedded in distributed

representational systems. These indirect effects of conscious learning need not

themselves be conscious, particularly if they are weak.

We will return to these issues in the general discussion. At this point, we would

like to introduce the set of assumptions that together form our framework. In the

following, we present these assumptions in four groups: Assumptions about

information processing (P1-4), about representation (R1-3), about learning (L1-3) and,

finally, about consciousness (C1-5).

5.1 Assumptions about information processing

Consistently with well-known ideas in the connectionist literature (e.g., Rumelhart &

McClelland, 1986), we will assume the following without further discussion:
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P1. The cognitive system is best viewed as involving a large set of interconnected

processing modules organized in a loose hierarchy. Each module in turn consists

of a large number of simple processing units connected together.

P2. Long-term knowledge in such systems is embodied in the pattern of connectivity

between the processing units of each module and between the modules

themselves.

P3. Dynamic, transient patterns of activation over the units of each module capture

the results of information processing conducted so far.

P4. Processing is graded and continuous: Connected modules continuously influence

each other’s processing in a graded manner that depends on the strength of the

connection between them and on the strength of the activation patterns that they

contain.

5.2. Assumptions about representation

Representation is one of the most difficult issues to think about in the cognitive

sciences because it is often delicate to delineate exactly which states should be

properly taken to be representational (see Dienes & Perner, this volume, for a detailed

discussion of representation). In the following, and in contrast to purely dynamical

approaches, we take the perspective that representations are necessary as mediating

states through which the intermediate results of processing can be captured, thereby

making it possible for complex tasks to be decomposed into modular components.

R1. Representations consist exclusively of the transient patterns of activation that

occur in distributed memory systems

This assumption is a central one in our framework because it contrasts with other

recent proposals (e.g., Dienes & Perner, this volume). In particular, we do not

think that the knowledge that is embedded in the pattern of connectivity between

units of a module or between modules themselves is representational in the same

manner that patterns of activation are. Indeed, while such knowledge can be

analyzed as representational from a third-person perspective (because the

connection between two units, for instance, can be    described    as representing the

fact that the units’ activity are correlated), it is never directly available to the

system itself. In other words, such knowledge is knowledge “in the system” rather

“for the system” (see Clark & Karmiloff-Smith, 1993). Knowledge embedded in

connections weights can thus only be expressed dynamically, over the course of

some processing, when the corresponding representations form over a given set of

processing units. These representations can then in turn influence further

processing in other modules. Importantly, and in contrast to thoroughly classical
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approaches in cognitive science, the extent to which representations can influence

processing in such systems never depends on representations being interpreted by

a “processor”.

R2. Representations are graded: They vary on several dimensions that include

strength, stability in time, and distinctiveness

Patterns of activation in neural networks and in the brain are typically distributed

and can therefore vary on a number of dimensions, such as their stability in time,

their strength. or their distinctiveness.    Stability   in time refers to how long a

representation can be maintained active during processing. There are many

indications that different neural systems involve representations that differ along

this dimension. For instance, the prefrontral cortex, which plays a central role in

working memory, is widely assumed to involve circuits specialized in the

formation of the enduring representations needed for the active maintenance of

task-relevant information.     Strength    of representation simply refers to how many

processing units are involved in the representation, and to how strongly activated

these units are. As a rule, strong activation patterns will exert more influence on

ongoing processing than weak patterns. Finally,    distinctiveness   of representation

refers to the extent of overlap that exists between representations of similar

instances. Distinctiveness has been hypothesized as the main dimension through

which cortical and hippocampal representations differ (McClelland, McNaughton,

& O'Reilly, 1995; O'Reilly & Munakata, 2000), with the latter becoming active

only when the specific conjunctions of features that they code for are active

themselves.

In the following, we will collectively refer to these different dimensions as

“quality of representation” (see also Farah, 1994) For our purposes, the most

important notion that underpins these different dimensions is that representations,

in contrast to the all-or-none prepositional representations typically used in

classical theories, instead have a    graded   character which enables any particular

representation to convey in a natural manner the extent to which what it refers to

is indeed present. A second important aspect of this characterization of

representational systems in the brain is that representations are   complex,

distributed objects    that systematically tend to involve many processing units.

R3. Representations are dynamic, active, and constantly causally efficacious.

This assumption simply states that memory traces, far from being static

propositions  waiting to be accessed by some process, instead continuously

influence processing regardless of their strength, stability, or distinctiveness. This
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assumption is again central in any connectionist account of cognition. Indeed, it

takes its roots in McClelland’s analysis of cascaded processing (McClelland,

1979), which, by showing how modules interacting with each other need not

“wait” for other modules to have completed their processing before starting their

own, demonstrated how stage-like performance could emerge out of such

continuous, non-linear systems. Thus, even weak, poor-quality traces, in our

framework are capable of influencing processing, for instance through associative

priming mechanisms, that is, in   conjunction    with other sources of stimulation.

Strong, high-quality traces, in contrast have    generative capacity   , in the sense that

they can influence performance (i.e., determine responses) independently of the

influence of other constraints, that is, whenever their preferred stimulus is present.

5.3. Assumptions about learning

Having put in place our assumptions about processing and representation, we now

focus on learning mechanisms. We assume the following:

L1. Adaptation is a mandatory consequence of information processing

Every form of neural information processing produces adaptive changes in the

connectivity of the system, through mechanisms such as Long Term Potentiation

(LTP) or Long Term Depression (LTD) in neural systems, or hebbian learning in

connectionist systems. An important aspect of these mechanisms is that they are

mandatory in the sense that they take place whenever the sending and receiving

units or processing modules are co-active. O’Reilly and Munakata (2000) have

described hebbian learning as instantiating what they call    model learning   . The

fundamental computational objective of such unsupervised learning mechanisms

is to enable the cognitive system to develop useful, informative models of the

world by capturing its correlational structure. As such, they stand in contrast with

task learning    mechanisms, which instantiate the different computational objective

of mastering specific input-output mappings (i.e., achieving specific goals) in the

context of specific tasks through error-correcting learning procedures. Regardless

of how these two classes of learning mechanisms can be combined, the important

point to remember in the context of this framework is that model learning

operates whenever information processing takes place, whereas task learning only

operates in specific contexts defined by particular goals.

L2. Learning is adaptation that specifically involves high-quality representations.

We assume that learning consists specifically of those adaptation processes that

involve high-quality, strong, stable representations. One way to characterize this
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notion is to appeal to another distinction offered by O’Reilly & Munakata (2000)

— that between weight-based and activation-based processing. According to

O’Reilly & Munakata, “Activation-based processing is based on the activation,

maintenance, and updating of active representations to influence processing,

whereas weight-based processing is based on the adaptation of weight values to

alter input/output mappings” (p. 380). The main advantage of activation-based

processing is that it is faster and more flexible than weight-based processing.

Speed and flexibility are both salient characteristics of high-level cognition.

O’Reilly & Munakata further speculate that activation-based processing is one of

the central characteristics of the frontal cortex, and suggest that this region of the

brain has evolved specifically to serve a number of important functions related to

controlled processing, such as working memory, inhibition, executive control, and

monitoring or evaluation of ongoing behavior. To serve these functions,

processing in the frontal cortex is characterized by mechanisms of active

maintenance through which representations can remain strongly activated for long

periods of time so as it make it possible for these representations to bias

processing elsewhere in the brain.

O’Reilly and Munakata point out that a major puzzle is to understand how the

frontal cortex comes to develop what they call a “rich vocabulary of frontal

activation-based processing representations with appropriate associations to

corresponding posterior-cortical representations” (p. 382). Our framework does

not solve this difficult chicken-and-egg problem, but simply suggests that early

learning or development, which involve mostly weight-based processing,

progressively results in the emergence of the strong, high-quality representations

that allow activation-based processing and the ensuing flexibility to take place.

Language and linguistic representations in general undoubtedly play a major role

in making activation-based processing possible.

L3. Learning has both direct and indirect effects.

Learning not only has direct effects, (i.e., changing the subjective experience that

corresponds to the processing of a particular event and modifying the system’s

response to that event), but it also has indirect effects on how (functionally or

physically) similar events are processed. This is again a natural consequence of

the assumption that memory systems in general involve distributed,

superpositional representations, such that all representations share many

processing units, and such that all processing units are involved in many

representations. In such representational systems, changes to any particular

representation that might arise from learning will necessarily have indirect effects
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on related representations. Importantly, these indirect effects are mediated by

changes in the connection weights shared by the different representations in a

given module; in other words, they do not involve direct, simultaneous

modification of the corresponding representations. These indirect effects are thus,

in our framework, not necessarily accompanied by awareness, because to be

accompanied by awareness, their origin and magnitude would have to be

identifiable by the agent.

5.4 Assumptions about consciousness

So far, we have spelled out a number of assumptions about information processing,

representation, and learning. We are now ready to introduce our assumptions about

consciousness and its relationship to adaptation and learning processes. The central

ideas that we would like to explore are (1) that the extent to which a particular

representation is available to consciousness depends on its quality, (2) that learning

produces, over time, higher-quality, adapted representations, and (3) that the function

of consciousness is to offer necessary control over those representations that are

strong enough to influence behavior, yet not sufficiently adapted that their influence

does not require control anymore.

Insert Figure 1 about here

Figure 1 aims to capture these ideas by representing the relationships between quality

of representation (X-axis) on the one hand and (1) potency, (2) availability to control,

(3) availability to subjective experience. We discuss the figure at length in the

following section. Let us simply note here that the X-axis represents a continuum

between weak, poor-quality representations on the left and very strong, high-quality

representations on the right., and that principle R3 (“Representations are constantly

causally efficacious”) is captured by the curve labeled “potency”, which assumes that

all representations, even weak ones, can influence behavior to some extent. The

general form of the relationship between quality of representation and potency is

assumed to be non-linear.

Two further points are important to keep in  mind with respect to Figure 1. First,

the relationships depicted in the Figure are intended to represent   availability    to some

dimension of behavior or consciousness independently of other considerations. Many



Implicit learning: A graded, dynamic perspective
22

potentially important modulatory influences on the state of any particular module are

thus simply not meant to be captured neither by Figure 1, nor by our framework as we

present it here. Second, the figure is intended to represent what happens in   each    of

many processing modules involved in any particular cognitive task. Thus, as hinted by

assumptions P1-P4, at any point in time, there will be many such modules active, each

contributing to some extent to behavior and to conscious experience; each modulating

the activity of other modules. With these caveats in mind, let us now turn to our five

assumptions about consciousness and its relationship with learning:

C1. Consciousness involves two dimensions: Subjective experience and control

As argued by many, and most cogently by Ned Block, consciousness involves at

least two separable aspects, namely access consciousness (A-consciousness) and

phenomenal consciousness (P-consciousness). For Posner and Rothbart (Posner &

Rothbart, 1998), awareness of the sensory world and voluntary control are the two

most important aspects of consciousness. According to Block (1995), “A

perceptual state is access-conscious roughly speaking if its content — what is

represented by the perceptual state — is processed via that information processing

function, that is, if its content gets to the Executive system, whereby it can be

used to control reasoning and behavior.” (p. 234). In other words, whether a state

is A-conscious is defined essentially by the causal efficacy of that state; the extent

to which it is available for global control of action. Control refers to the ability of

an agent to control, to modulate, and to inhibit the influence of particular

representations on processing. In our framework, control is simply a function of

potency, as described in assumption C3. In contrast, P-consciousness refers to the

phenomenal aspects of subjective experience: A state is P-conscious to the extent

that there is something it is like to be in that state. While the extent to which

potency (i.e., availability to access consciousness), control, and subjective

experience (i.e., availability to phenomenal consciousness) are dissociable is

debatable, our framework suggests that these three aspects of consciousness are

closely related to each other.

C2. Availability to consciousness correlates with quality of representation

This assumption is also a central one in our framework. It states that explicit,

conscious knowledge involves higher quality memory traces than implicit

knowledge. "Quality of representation", as discussed above (assumption R3),

designates several properties of memory traces, such as their relative strength in

the relevant information-processing pathways, their distinctiveness, or their

stability in time. Our assumption is consistent with the theoretical positions

expressed by several different authors over the last few years. O’Brien & Opie
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(1999) have perhaps been the most direct in endorsing a characterization of

phenomenal consciousness in terms of the properties of mental representations in

defending the idea that “consciousness equals stability of representation”, that is,

that the particular mental contents that one is aware of at some point in time

correspond to those representations that are sufficiently stable in time. Mathis &

Mozer  (1996) have also suggested that consciousness involves stable

representations, but have defined stability more technically than O’Brien & Opie

have, specifically by offering a computational model of priming phenomena in

which stability literally corresponds to the state that a so-called dynamic

“attractor” network reaches when the activations of a subset of its units stops

changing and settle into a stable, unchanging state.

A slightly different perspective on the notion of “quality of representation” is

offered by authors who emphasize not stability, but strength of representation as

the important feature through which to characterize availability to consciousness.

One finds echoes of this position in the writings of Kinsbourne (1997), for whom

availability to consciousness depends on properties of representations such as

duration, activation, or congruence. Importantly, for both O’Brien & Opie and for

Kinsbourne, the contents of subjective experience never depend on

representations entering a particular system in the brain — that is, consciousness

is conceived as essentially decentralized: Any region of the brain can contribute to

the contents of subjective experience so long as its representational vehicles have

the appropriate properties.

In Figure 1, we have represented the extent to which a given representation is

available to the different components of consciousness (phenomenal

consciousness, access-consciousness/potency, and control) as functions of a single

underlying dimension expressed in terms of the quality of this representation.

Availability to access-consciousness is represented by the curve labeled

“potency”, which expresses the extent to which representations can influence

behavior as a function of their quality. We simply assume that high-quality,

strong, distinctive representations are more potent than weaker representations.

“Availability to control processes” is represented by a second curve, so labeled.

We simply assume that both weak and very strong representations are difficult to

control, and that maximal control can be achieved on representations that are

strong enough that they can begin to influence behavior in significant ways, yet

not so strong that have become utterly dominant in processing. Finally,

availability to phenomenal experience is represented by the third curve, obtained

by convolving the other two. The underlying intuition, discussed in the context of
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assumption C4, is that which contents enter subjective experience is a function of

both availability to control and of potency.

C3. Developing high-quality representations takes time

This assumption states that the emergence of high quality representations (see

assumption C2) in a given processing module takes time, both over training or

development, as well as during processing of a single event. Figure 1 can thus be

viewed as representing not only the relationships between quality of

representation and their availability to the different components of consciousness,

but also as a depiction of the dynamics of how a particular representation will

change over the different time scales corresponding to development, learning, or

within-trial processing.

Both skill acquisition and development, for instance, involve the long-term

progressive emergence of high-quality, strong memory traces based on early

availability of weaker traces. Likewise, the extent to which memory traces can

influence performance at any moment (e.g., during a single trial) depends both on

available processing time, as well as on overall trace strength. We envision these

processes of change as operating on the connection weights between units in a

connectionist network. They can involve either task-dependent, error-correcting

procedures, or unsupervised procedures such as hebbian learning. In either case,

continued exposure to exemplars of the domain will result in the development of

increasingly congruent and strong internal representations that capture  more and

more of the relevant variance. Although we think of this process as essentially

continuous, we distinguish three stages in the formation of such internal

representations (each depicted as separate regions in Figure 1): Implicit

representations, explicit representations, and automatic representations.

The first region, labeled “implicit cognition” in Figure 1, is meant to

correspond to the point at which processing starts in the context of a single trial,

or to some early stage of development or skill acquisition. In either case, this

stage is characterized by weak, poor-quality representations. A first important

point, embodied in assumption R3, is that representations at this stage are already

capable of influencing performance, as long as they can be brought to bear on

processing together with other sources of constraints, that is, essentially through

mechanisms of associative priming and constraint satisfaction. A second

important point is that this influence is best described as "implicit", because the

relevant representations are too weak (i.e., not distinctive enough) for the system

as a whole to be capable of exerting control over them: You cannot control what
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you cannot identify as distinct from something else. One might even speculate

that what enables you to take control of an internal state is precisely the fact that it

is capable of triggering responses in and of itself — a speculation that links

control with action in a very direct way.

The second region of Figure 1 corresponds to the emergence of explicit

representations, defined as representations over which one can exert control. In

the terminology of attractor networks, this would correspond to a stage during

learning at which attractors become better defined — deeper, wider, and more

distinctive. It is also at this point that the relevant representations acquire

generative capacity, in the sense that they now have accrued sufficient strength to

have the potential to determine appropriate responses when their preferred

stimulus is presented to the system alone. Because awareness is partially tied to

control in our framework, one would thus also be aware both of these internal

representations and of their influence on our behavior. Because one is aware of

these representations, one can then also possess metaknowledge about them, and

recode them in various different ways, for instance, as linguistic propositions.

The third region involves what we call automatic representations, that is,

representations that have become so strong that their influence on behavior can

not longer be controlled (i.e., inhibited). Such representations exert a mandatory

influence on processing. Importantly, however, one is aware both of possessing

them (that is, one has relevant metaknowledge) and of their influence on

processing (see also Tzelgov, 1997), because availability to conscious awareness

depends on the quality of internal representations, and that strong representations

are of high quality. In this perspective then, one can always be conscious of

automatic behavior, but not necessarily with the possibility of control over these

behaviors.

In our framework, skill acquisition, and development therefore involve a

continuum at both ends of which control over representations is impossible or

difficult, but for very different reasons: Implicit representations influence

performance but cannot be controlled because they are not yet sufficiently

distinctive and strong for the system to even know it possesses them. This might

in turn be related to the fact that, precisely because of their weakness, implicit

representations cannot influence behavior on their own, but only in conjunction

with other sources of constraints. Automatic representations, on the other hand,

cannot be controlled because they are too strong, but the system is aware both of

their presence and of their influence on performance.
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C4. The function of consciousness is to offer flexible, adaptive control over behavior

Our framework gives consciousness a central place in information processing, in

the sense that its function is to enable flexible control over behavior. Crucially,

however, consciousness is not necessary for information processing, or for

adaptation in general, thus giving a place for implicit learning in cognition. We

believe this perspective to be congruent with theories of adaptation and optimality

in general.

Indeed, another way to think about the role of learning in consciousness is to

ask: "When does one   need   control over behavior?". Control is perhaps not

necessary for implicit representations, for their influence on behavior is

necessarily weak (in virtue of the fact that precisely because they are weak, such

representations are unlikely to be detrimental to the organism even if they are not

particularly well-adapted). Likewise, control is not necessary for automatic

representations, because presumably, those representations that have become

automatic after extensive training should be   adapted    (optimal) as long as the

processes of learning that have produced them can themselves be assumed to be

adaptive. Automatic behavior is thus necessarily optimal behavior, except,

precisely, in cases such as addiction or in laboratory situations where the

automatic response is manipulated to be non-optimal, such as in the Stroop

situation. Referring again to Figure 1, this analysis thus suggests that the

representations that require control are the explicit representations that correspond

to the central region of Figure 1: Representations that are strong enough that they

have the potential to influence behavior in and of themselves (and hence that one

should really care about, in contrast to implicit representations), but not

sufficiently strong that they can be assumed to be already adapted, as is the case

for automatic representations. It is for those representations that control is needed,

and, for this reason, it is of these representations that one is most aware of.

Likewise, this analysis also predicts that the dominant contents of subjective

experience at any point in time consists precisely of those representations that are

strong enough that they can influence behavior yet weak enough that they still

require control. Figure 1 reflects these ideas by suggesting that the contents of

phenomenal experience depend both on the potency of currently active

representations as well as on their availability to control. Since availability to

control is inversely related to potency for representations associated with

automatic behavior, this indeed predicts weaker availability to phenomenal

experience of “very strong” representations as compared to “merely strong”
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representations. Such “automatic representations” therefore form what Mangan

(1993 ) has called the “fringe of consciousness”. In other words, such

representations can become conscious if appropriate attention is directed towards

their contents — as in cases where normally automatic behavior (such as walking)

suddendly becomes conscious because the normal unfolding of the behavior has

been interrupted (e.g., because I’ve stumbled upon something) — but they are not

normally part of the central focus of awareness nor do they require conscious

control.

While the dominant contents of subjective experience can thus be viewed as

reflecting the activity of the topmost module in the constantly evolving loose

hierarchy of processing modules involved in any particular aspect of information

processing, it is also important to note that we assume, in contrast to the position

expressed by Perruchet & Vinter, that complex representations depend on the

continued activation of their more elementary components. In other words, while

learning certainly results in the elaboration of progressively more complex

representations, it neither prevents their components from contributing to

subjective experience nor does it eliminate their influence on ongoing processing.

This therefore opens the door for the continued — but attenuated, indirect —

expression of the representations associated with these lower-level modules.

C5. Learning shapes conscious experience

This assumption, which we adapt from Perruchet & Vinter (this volume) is a

corollary of assumption C4: If the function of consciousness is to offer flexible,

adaptive control over behavior, then its contents — the way it reflects the world

— should necessarily be shaped by learning so that, at any moment, these

contents tend to reflect precisely those aspects of the situation that most require

control. This assumption allows us to relate two central aspects of consciousness

that have often been considered as independent: subjective experience and control

of action —or phenomenal vs. access consciousness.

5.5. Ways for knowledge to be implicit

In our framework, we emphasized quality of representation as a central dimension

through which to account for which representations are likely to enter conscious

awareness. It should be clear, however, that we take quality of representation as a

necessary   , but not   sufficient   condition, for conscious awareness. In particular, our

framework remains mute with respect to the fate of the high-quality, strong

representations that characterize explicit, conscious cognition, short of claiming that it
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is these representations that are most likely to form the contents of subjective

experience. Whether these representations   actually    enter conscious experience is yet a

different story — one in which processes of attention and processes of integration

undoubtedly play a central role. In this respect, our framework is not inconsistent with

recent proposals that emphasize the importance of such processes in the formation of

subjective experience. One such recent  proposal has been put forward by Dehaene

and Naccache (2001). These authors, based on Baars’ notion of “global workspace”

(Baars, 1988), propose that conscious awareness depends on the extent to which the

contents of the many domain-specific unconscious processing modules that make up

our brain can be made accessible globally through specific, dedicated, long-distance

neural pathways that interconnect the modules and specific regions of the brain (i.e.,

essentially prefrontal cortex, anterior cingulate and other regions connected to both).

Availability to the global workspace thus depends on both bottom-up (i.e., input

strength) and top-down (i.e. attention) factors. When these two conditions exist, the

contents of those modules that connect to the neural workspace would then enter in

the stable, resonant, or synchronous states that are assumed to correlate with

conscious awareness.

Kanwisher (2001) also discusses the conditions under which particular

representations will enter conscious awareness, and notes that activation strength

alone, while perhaps necessarily, is certainly not sufficient. Like Dehaene and

Naccache, Kanwisher suggests that awareness also depends on “informational

access”, that is, on the fact that other parts of the brain/mind have access to the

relevant representations. Kanwisher also suggests the accessibility can change over

time as a result of practice — a point that we very much agree with —, and that an

important further factor in determining availability to consciousness is what she calls

the “type/token” distinction, that is, the fact that awareness of some perceptual

attribute not only requires a strong corresponding representation, but also

“individuation of that perceptual information as a distinct event” (p. 107). In other

words, the relevant representation has to be accompanied by relevant metaknowledge

— a point discussed in detail by Dienes and Perner (1999).

Our own framework leaves open four distinct possibilities for knowledge to be

implicit.

First, we assume that the knowledge that is embedded in the connection weights

within and between processing modules can never be directly available to conscious

awareness and control. This is simply a consequence of the fact that we assume that

consciousness necessarily involves representations (patterns of activation over
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processing units). Because weight-based knowledge is not representational in this

specific sense, it follows that it can never directly contribute to the contents of

conscious experience. This knowledge will, however, shape the representations that

depend on it, and its effects will therefore detectable — but only indirectly, and only

to the extent that these effects are sufficiently marked in the corresponding

representations.

Second, we assume that to enter conscious awareness, a representation needs to be

a sufficiently high-quality in terms of strength, stability in time, or distinctiveness.

Weak representations are therefore poor candidates to enter conscious awareness.

This, however, as we repeatedly emphasized, does not necessarily imply that they

remain causally inert, for they can influence further processing in other modules, even

if only weakly so. Note that this aspect of our framework differs both from the

assumptions put forward by O’Brien and Opie (1999) and from those embodied in

Perruchet and collaborators (Perruchet, Vinter, & Gallego, 1997; Perruchet & Vinter,

1998; this volume).

Third, a representation can be strong enough to enter conscious awareness, but

failed to be recognized as relevant to the particular situation that is currently

unfolding. This case corresponds almost exactly with Kanwisher’s “type/token”

distinction, and also with aspects of Dienes & Perner’s analysis of the differences

between implicit and explicit knowledge. Conscious contents, indeed, have to be

linked together in a coherent manner before they can be made available globally for

conscious report and for the control of action. One should therefore be very careful in

distinguish between cases involving awareness of the intention of initiating some

behavior, awareness of the fact that the behavior is taking place, awareness of the

causes of the behavior, and awareness of the effects of the behavior. There are thus

many opportunities for a particular conscious content to remain, in a way, implicit, not

because its representational vehicle does not have the appropriate properties, but

because it fails to be integrated with other conscious contents. Dienes & Perner (this

volume) offer an insightful analysis of the different ways in which what we call high-

quality representations can remain implicit.

Finally, a representation can be so strong that its influence can be no longer be

controlled. In theses cases, it is debatable whether the knowledge should be taken as

genuinely unconscious, because they certainly can become fully conscious as long as

appropriate attention is directed to them, but the point is that such very strong

representations can trigger and support behavior without conscious intention and

without the need for conscious monitoring of the unfolding behavior.
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Another way to think about these different ways for knowledge to be implicit is to

consider the various mechanisms of change suggested by O’Reilly & Munakata.

Recall that these authors distinguish between weight-based processing and activation-

based processing. Weight-based processing in turn involves model learning

(subserved by hebbian-like learning mechanisms) and task learning (subserved by

error-correcting learning procedures). From the perspective developed here,

activation-based processing and learning will always tend to be associated with

awareness — even though it might often occur that conscious contents fail to be

associated with relevant metaknowledge and therefore remain implicit. Model

learning, in contrast, corresponds to the clearest case of implicit learning, to the extent

that it is assumed to be a mandatory consequence of information processing. Such

learning therefore never depends on the intentions or goals of the agent, and its

effects, because they are very gradual, can be expressed in behavior before they

become available to awareness. Task learning, by contrast, is necessarily intentional,

and therefore more likely to shape representations in ways that are directly consistent

with the current goals of the agent.

6. Implications

In this section, we offer a necessarily brief and sketchy set of examples where we

have found our framework helpful in terms of understanding empirical phenomena

such as priming, skill acquisition, automaticity, development, or the interpretation of

dissociations in neuropsychology. This short review also gives us the opportunity to

link our framework with similar previous accounts of these phenomena and to further

contrast our own proposal with other positions.

6.1. Priming.

In a recent paper, Becker et al. (1997) describe an attractor, neural-network model of

both short- and long-term priming effects that accounts for a large variety of priming

phenomena as the result of an automatic process of incremental learning that is based

on the same information processing and representational principles that we have just

outlined. Becker and colleagues showed that semantic priming can be construed as the

automatic deepening of the basin of attraction "of the semantic space for both primes

and related targets, and that this effect should primarily manifest itself on semantic-

retrieval tasks" (p. 1062). Their model accurately predicts that performing a semantic

task on a target is influenced by having previously performed a similar task on a
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semantically related prime, even if a number of intervening words are presented

between prime and target. Importantly, it also predicts low or null priming effects

when long-term semantic effects are tested through a lexical decision task (see also

Joordens & Becker, 1997) or when the processing task performed with the primes is

not semantic (Friedrich, Henik, & Tzelgov, 1991; Kaye & Brown, 1985; Smith,

Theodor, & Franklin, 1983). These results, as well as the successful simulation work,

are compatible with our own assumptions in that they suggest (1) that learning is

assumed to be a mandatory consequence of processing, (2) that the effects of learning

are particularly focused on those representational features that are relevant to the

processing task (and which therefore produce specific experiences); and (3) that these

effects are not limited to their most direct consequences —in this case, the episodic

recollection that a prime has been presented— but may also produce a host of indirect

(priming) effects that are not necessarily mediated by conscious recollection of its

cause.

6.2. Implicit learning

If priming can be cast as a form of implicit learning, as Becker et al. (1997) suggest, it

seems that implicit learning can likewise be depicted as a form of complex relational

priming. Indeed, while our framework emphasizes that learning results from

conscious experience, it also makes it clear that the effects of learning need not be

limited to modifying conscious experience. In particular, two important assumptions

embodied in our framework are (1) that adaptation occurs as a mandatory

consequence of processing, and (2) that learning has both direct and indirect effects.

Three consequences of these assumptions are (1) that learning can occur without

intention to learn, (2) that the changes resulting from learning can remain unconscious

at the time of learning, and (3) that such changes can influence subsequent processing

even in the absence of awareness that this is so.

Because of the intricate methodological issues involved, it has proved rather

difficult to gather supporting evidence for any of these three claims. It is always

difficult to assess exactly what participants in an experiment involving learning are

actually intending to do. Implicit learning studies have often tried to circumvent this

problem by exposing participants to very complex settings in which learning would

not be expected to improve through an intentional orientation, but this strategy has not

been frequently used (see Jiménez, Méndez, and Cleeremans, 1996, for one example).

However, indirect evidence that people can effectively learn without intending to do

so has been obtained through some recent experiments that use dual-cue paradigms, in

which the existence of a perfect and explicit predictor of the relevant stimulus
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dimension can be taken to prevent the deliberate search for more complex

contingencies (Cleeremans, 1997; Jiménez & Méndez, in press). The fact that learning

of these complex contingencies can be obtained even under these dual-cue conditions

provides us with a clear indication that this learning proceeds regardless of

participants' intention to learn. Importantly, however, these results should not be taken

as indicating that learning is completely unselective. Indeed, several recent

experimental results (Jiménez & Méndez, 1999; 2001; see also Jiang & Chun, in

press) convincingly indicate that learning is selectively obtained for those particular

features that are relevant to the task(s) at hand and, hence, that learning is deeply

modulated by the attentional variables that ultimately determine the learner's

experiences.

As we have repeatedly stated, the fact that learning depends on the conscious

experiences of the learner does not necessarily entail that all learning should be

conscious at the moment of learning, or that they should be conscious to produce any

effect on performance. The unconscious nature of the knowledge acquired during

training on a sequence learning task has been examined by us in previous studies (e.g.,

Jiménez et al., 1996) and it has been recently investigated by Destrebecqz and

Cleeremans (in press) by adapting Jacoby’s process dissociation procedure.

In a typical sequence learning situation (see Clegg, DiGirolamo, & Keele, 1998),

participants are asked to react to each element of a sequentially structured visual

sequence of events in the context of a serial reaction time task. On each trial, subjects

see a stimulus that appears at one of several locations on a computer screen and are

asked to press as fast and as accurately as possible on the key corresponding to its

current location. Unknown to them, the sequence of successive locations follows a

repeating pattern (Nissen & Bullemer, 1987), and participants learn this pattern, as

showed by a progressive decrease of their reaction times, that increase dramatically

when the sequential structure of the material is modified (Cohen, Ivry, & Keele, 1990;

Curran & Keele, 1993; Reed & Johnson, 1994).

This learning, however, often fails to be expressed through verbal reports,

(Willingham, Nissen, & Bullemer, 1989; Curran & Keele, 1993) — a dissociation that

has led many authors to consider learning in this situation to be implicit. However,

many of the relevant studies have been criticized on methodological grounds that

would be too long to review in this chapter (but see Cleeremans, Destrebecqz, &

Boyer, 1998 for a detailed overview). Suffice it to say that many of the relevant

methodological difficulties stem from the fact that most empirical paradigms through
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which  implicit learning has been studies have assumed that one take specific tasks

with either implicit or explicit processing.

To overcome these methodological difficulties, Destrebecqz & Cleeremans (in

press) sought to adapt Jacoby’s process dissociation procedure (e.g., Jacoby, 1991) to

the study of sequence learning. Subjects were first trained, under the incidental

learning conditions typical of implicit learning studies, on a second-order conditional

sequence. This training occurred under two conditions defined by the length of the

response-to-stimulus interval (RSI): One group of participants was trained with a

standard RSI of 250 msec, and another was trained with an RSI of 0 msec. For this

latter group, the next stimulus therefore appeared on the screen as soon as the

previous one had been responded to. Consistently with the ideas embodied in

assumption C3 above, we hoped that reducing the time available for processing would

selectively impair the development of strong, explicit representations of the links

between the temporal context set by previous elements of the sequence and the

location of the next stimulus.

To find out about participants’ explicit knowledge of the material, Destrebecqz and

Cleeremans asked them to perform two generation tasks and a recognition task. The

generation task was adapted from Jacoby’s PDP, and consisted of both an inclusion

task as well as an exclusion task. In inclusion, participants had to generate a sequence

of 96 elements that resembled the training sequence. They were told to base their

sequence either on conscious recollection or to guess. Both conscious and

unconscious processes can therefore contribute to performance in inclusion. In

exclusion, participants were again told to generate a sequence of 96 elements, but this

time they were told to produce a sequence that was as different as possible from the

training sequence. By assumption, the only way participants can perform this

exclusion task successfully is by recollecting the location of the next stimulus and by

selecting another location. Failure to exclude can thus be interpreted as reflecting the

influence of implicit knowledge. In this condition thus, and in contrast to what

happens in inclusion, conscious and unconscious components of performance act

against each other. Finally, in recognition, participants were presented with 24

sequences of three elements, only 12 of which had actually been part of the training

sequence. For each, they had to indicate the extent to which they believed it was part

of the training sequence on a 6-points scale.

The results indicated that while both groups of participants exhibited some explicit

knowledge of the material through the inclusion task, only people trained with an RSI

of 250 msec were able to perform successfully in the exclusion task. People trained
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with an RSI of 0 msec indeed continued to generate material from the training

sequence in spite of instructions to the contrary. Further, only participants trained with

a 250 msec RSI were able to perform above chance on the final recognition task.

When applied to these data, our framework suggests the following interpretation:

People trained with an RSI were given more opportunities to develop and link

together high quality memory traces than people in the no RSI condition. Because

awareness depends in part on the quality of stored memory traces, the former will

therefore tend to acquire more explicit knowledge than the latter. Importantly, “no

RSI” participants do acquire relevant knowledge about the sequence — but in the

form of weaker memory traces that are only capable of influencing responses when

contextual information is simultaneously available. This knowledge can thus be

expressed in the SRT task as well as in the generation tasks because in both cases,

responses can be determined based jointly on an external stimulus (self-generated in

the case of the generation tasks, or produced by the experimental software in the SRT

task) and the relevant memory traces. Because these traces are weak and because

controlled processing (and hence awareness) requires high-quality traces to be

available, their influence on performance remains undetected and controlled

responding made difficult. The relevant sequential knowledge therefore cannot be

inhibited when the generation task is performed under exclusion conditions. Similarly,

during recognition, weak memory traces do not allow successful discrimination

between old and novel sequences in the absence of perceptual and motor fluency, as

was the case in Destrebecqz & Cleeremans’s study.

6.3 Skill acquisition and       automaticity

Skill acquisition refers to extended periods of exposure to a particular domain during

which learning occurs. It might involve learning how to use musical instrument,

learning to master a particular athletic skill, or learning natural language. In our

framework, skill acquisition thus involves a graded continuum expressed in terms of

the relative strength of the underlying representations. This continuum involves weak,

implicit representations when learning starts, and very strong, high-quality

representations when training ends.

Automaticity has often been associated with lack of availability to conscious

experience, but some authors (i.e., Tzelgov, 1997) have proposed that the defining

feature of automatic behavior should simply be its ballistic properties, that is, the fact

that once initiated, execution of the behavior can no longer be inhibited until
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completed. We very much agree with this position: In our framework, the strong

representations associated with automatic behavior are available to subjective

experience and form what one could call, along with Mangan, the “fringe” of

consciousness. In other words, such representations can become conscious if

appropriate attention is directed towards their contents — as in cases where normally

automatic behavior (such as walking) suddendly becomes conscious because the

normal unfolding of the behavior has been interrupted (e.g., because I’ve stumbled

upon something) — but they are not normally part of the central focus of awareness

nor do they require conscious control. This is reflected in our framework by assuming

that the contents of phenomenal experience depend both on the potency of currently

active representations as well as on their availability to control. Since availability to

control is inversely related to potency for automatic representations, this indeed

predicts weaker availability to phenomenal experience of very strong representations

as compared to merely strong representations.

Our framework also predicts that very strong representations are left in place; that

is, they become active whenever their preferred stimulus is present. This suggests that

what happens over the course of learning a skill is that additional novel ways of

inhibiting or otherwise modulating the effects of these very strong representations are

found through processes of learning. Consider what happens when you learn to play

the piano, for instance. As Karmiloff-Smith (1992) points out, one goes from effortful

programming of every movement to a stage where entire sequences of movements can

be executed all at once, and then to a later stage where genuine flexibility is achieved.

Our suggestion here is that subjective experience at each stage simply reflects the

contents of the processing modules that currently contain the most abstract

representation of the stimulus. Ability to control the influence of the contents of

lower-level modules is thus progressively lost during skill acquisition, but

importantly, these contents are still constitutive of subjective experience, if only

through their role in supporting higher-level representations.

6.4 Development

The notion that development involves continuous changes in the strength or quality of

underlying representations is central in many accounts of various relevant phenomena.

For instance, McClelland and Jenkins (McClelland & Jenkins, 1991)’s connectionist

model of developmental changes in the balance beam task is rooted in the idea that

experience at solving balance beam problems results in the progressive differential

strengthening of the internal representations of the weight and distance information.

The relatively systematic sequence of stages observed through development in the
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emergence of mastery on this task, which exhibits various patterns of ability to solve

specific problems, can thus simply be accounted for by competition between the

information-processing pathways corresponding to each dimension. In other words,

this account of the emergence of skilled behavior at mastering balance-beam tasks is

entirely strength-based.

Munakata and collaborators (Munakata, et al., 1997) have likewise proposed a

novel account of the development of object permanence during infancy (see also

Mareschal, Plunkett, & Harris, 1999) in which the notion of strength of representation

also plays a central role. Classical theories of object permanence assume that at some

early point during development, children “acquire the concept” that objects continue

to exist when out of view. The crucial point here is that this knowledge is assumed to

be of a conceptual nature: Children are taken to be constantly developing explicit

theories about their environment, and their theories can be described as consisting of a

set of all-or-none beliefs about the way the world works. In stark constrast, Munakata

et al. suggested that the progressive emergence of appropriate anticipatory responses

in situations where a moving object temporarily disappears behind a screen can

emerge simply out of the operation of prediction-driven mechanisms such as

insantiated in the Simple Recurrent Network (Elman, 1990; see also Cleeremans,

Servan-Schreiber, & McClelland, 1989). Most importantly, Munakata et al. showed

how the model, when trained on such a prediction task, progressively develops

stronger, higher-quality representations of the object while it is hidden, and how this

progressive strengthening of the model’s internal representations can be related to the

development of knowledge about object permanence. Another important aspect of this

work was the demonstration that the very same principles — strength of internal

representation — could account for observed dissociations between different

measures (e.g., looking times vs. reaching behavior) of children’s ability to exhibit

knowledge of object permanence. It is interesting to note that in many ways, the

debates elicited in the developmental literature by the empirical findings related to

object permanence mirror those taking place in the field of implicit learning about

whether or not subjects are best described as “knowing the rules of the grammar”.

A central idea that both of these models illustrate is that continuous changes along

one dimension can exert non-linear effects on the overall behavior of the system when

interactions between several dimensions are considered. In other words, all-or-none

behavior can be rooted in continuous, graded changes in some relevant underlying

dimension.
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Finally, with respect to the development of explicit, conscious representations in

cognitive systems, our framework can also be linked in interesting ways with the

processes of representational redescription envisioned by Karmiloff-Smith

(Karmiloff-Smith, 1992) as the main process of change during development. A crucial

claim embodied in the assumptions that underpin the notion of representational

redescription is that learning is success-driven, that is, behavioral mastery of a

particular skill does not constitute a signal for learning to stop but rather a signal for

further learning to occur — on the internal representations through which mastery was

achieved. Representational description, according to Karmiloff-Smith, is a “…

process of ‘appropriating’ stable states to extract the information they contain, which

can then be used more flexibly for other purposes” (p. 25). Thus, representations

change over development in such a manner that previously implicit dimensions of the

problem — which are sufficient to achieve behavioral success — progressively

become explicit and hence available for global control of action and for verbal report.

Finally, our framework is also congruent with the idea that modules, in general, are a

product of learning and development rather than their starting point.

7.         Disscussion: What we leave behind

In this chapter, we have attempted to outline a framework that offers a clear functional

role to consciousness by linking conscious awareness with adaptation in general, and

with learning in particular. We have argued that if we take consciousness as the only

mechanism through which flexible control can be achieved over action, then it follows

that learning should be the most important factor that determines the contents of

conscious experience. Learning thus shapes consciousness, and consciousness, in turn,

reflects the adapted appreciation of the dynamics of the current situation that is

necessary to make flexible control over action possible (see also Perruchet & Vinter,

this volume). Our framework as it stands, however, does not address    how     the contents

of consciousness are shaped by experience; it merely suggests the conditions under

which representations are most likely to become part of conscious experience, and,

importantly for our purposes, it also roots the emergence of conscious awareness into

thoroughly subsymbolic mechanisms.

Further, our framework does not assume that there exists a strong distinction

between conscious and non-conscious aspects of cognition. Rather, it assumes that

conscious and unconscious aspects of cognition are simply that —   aspects   of a single

set of underlying neural mechanisms. Again, this position does not deny — far from it

— that there are qualitative differences between conscious and unconscious
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computations, but simply emphasizes that such differences are rooted in the non-linear

properties of otherwise graded, continuous representation and processing systems.

The most important implication of these assumptions in the context of implicit

learning research is that our framework leaves open the possibility for change to occur

without intention and without concurrent awareness that change is taking place.

“What we leave behind”, then, is a large set of unanswered questions about the fate

of what we have called “explicit representations” — those representations that we

assume constitute the best candidates to form the contents of phenomenal experience.

However, we hope to have convinced readers (1) that understanding conscious

(symbolic) cognition necessarily involves rooting this understanding in an analysis of

implicit (subsymbolic) cognition, and (2) that understanding processes of learning is

fundamental for any theory of consciousness. In this respect, the study of implicit

learning has a bright future, for it is through the development of sensitive paradigms

through which to explore the differences between conscious and unconscious

cognition that one can best contribute to the search for the neural correlates of

consciousness.
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Footnotes

1 This does not necessarily imply that artificial consciousness is not possible, but

simply that the relevant processes cannot consist simply of symbol manipulation.
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Figure Captions

Figure 1: Graphical representation of the relationships between quality of

representation (X-axis) and (1) potency, (2) availability to control, (3) availability to

subjective experience. See text for further details.
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