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COMPUTING CONSCIOUSNESS

What is it like to be human? That, of  course, 
is in a sense the question that Turing 
asked 55 years ago, offering the Turing 
Test as a way of  addressing the question 
without really answering it. Turing, indeed, 
suggested that we should attribute human-
like intelligence to any machine that exhibits 
behaviour indistinguishable from that of  a 
human being. But what about the question 
of  human experience? What about a human 
who consciously feels? Here, we introduce 
ways in which we might start thinking 
about building such an artificially conscious 

agent. We describe the basic mechanisms 
that such an agent should possess, based on 
what is currently known about the neural 
underpinnings of  consciousness.

Inject Mind Here:
From Intelligence 
to Consciousness.
Looking at the evolu-
tion of  artificial crea-
tures in film, one can-
not but acknowledge 
an evolution from 
mindless to mindful 
malevolence. Whereas 
Golem, Frankenstein’s 
creature, the body 
snatchers and Rome-
ro’s undead seemingly 
lack any real mind, 
making them into 
monsters, virtual legends such as 2001’s HAL or Demon 
Seed’s Proteus are actually scary because of  their mind. 
Without lingering on the philosophical debates on wheth-
er a certain type of  mind can exist independent of  its 
specific embodiment or whether any creature can under-
stand a consciousness that is not like his own (recall Lem’s 
Solaris), the thing that makes HAL and Proteus so human 
is not so much their ability to think as their possessing 
something resembling human consciousness. The point is 
that, whereas consciousness may or may not be required 
for an artificial agent to think, it is an essential element in 
creating anything resembling a human-like thinker that 
would pass the Turing Test.

The difference between a conscious and a non-conscious 
agent may seem futile or trivial, but it is neither. For a 
non-conscious agent, seeing the colour “red” is mere pat-
tern-matching and recognition, as dictated by an algo-
rithm. However, a conscious agent doesn’t simply process 
and identify “red”; instead there is the subjective experience 
of  “seeing red”. Philosopher Thomas Nagel put the fin-
ger on this problem of  subjective experience in a seminal 
paper entitled “what is it like to be a bat?” For conscious 
agents, there is something it is like to experience some-
thing. Therefore, the crucial question when we look at 
neural or computational mechanisms for consciousness, is 
why there exists such subjective experience for us (this has 
been coined by David Chalmers as the “hard problem” 
of  consciousness). What does it do (if  it does anything at 
all)? Is it simply a consequence of  having a sufficiently 
complex system? Or is consciousness possible in any sys-
tem? This problem of  “explaining” consciousness can be 
approached in very different ways that we cannot cover 

here, but we will survey some of  
these approaches as they are being 
developed in the emerging field of  
“machine consciousness”.

Mapping The Unknown: Con-
sciousness Phenomenology 
and Neurology. A formidable 
challenge lies at the very core of  
the endeavour to build conscious 
machines, for consciousness, by its 
very nature, is a completely pri-
vate phenomenon and therefore in 
principle inaccessible to objective 
measurement. As the philosopher 
David Chalmers famously pointed 

out, we do not have a “consciousness-meter” that we can 
point to people’s brain to figure out how conscious they 
are or what they are currently aware of. Thus, empirical 
research on consciousness, which is now booming, has es-
sentially sought to develop an approach whereby objec-
tive and subjective measures of  cognition can be obtained 
at the same time. For instance, one may ask people to 
make decisions in a cognitive task (say, identifying a bare-
ly visible stimulus) and to simultaneously report on their 
experience of  the stimuli (e.g. “I saw the stimulus” vs. 
“I am just guessing”). By correlating objective perform-
ance and subjective reports, one can assess the extent to 
which processing involves or requires awareness. One 
can further look for brain regions that activate differently 
under different conditions of  awareness. This approach 
has been called the “quest for the Neural Correlates of  
Consciousness” (NCC). While many different brain areas 
have been suggested as plausible candidates for the NCC, 
it is now clear that consciousness depends not merely on 
activity in one region, but rather on complex interactions 
that engage the entire cortex. Characterizing the mecha-
nisms that underlie these interactions is the focus of  what 
one could call a “quest for the Computational Correlates 
of  Consciousness” (CCC), that is, computational prin-
ciples that differentiate between information processing 
with and without consciousness.

Computational Correlates of  Consciousness
What conditions must a mental representation satisfy in 
order for it to reach consciousness? What are the compu-
tational consequences of  a representation reaching con-
sciousness? Do conscious and unconscious states influence 
processing differently? What is the computational utility 
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of  consciousness? As any question in AI, such questions 
can be approached in different ways: In terms of  abstract 
properties of  computations (e.g., holistic, analytical, con-
trolled, self-organising processing); or in a manner that 
takes direct inspiration from the way in which processing 
occurs in the brain (e.g., feed-forward versus recurrent 
processing in neural networks). Most existing theories of  
consciousness that are rooted in computational consider-
ations can be classified along two dimensions: A processing 
vs. representational dimension, and a specialised vs. non-spe-
cialised dimension. The first dimension opposes theories 
that emphasize the involvement of  specific processes (e.g., 
global synchrony) in generating conscious experience to 
theories that emphasize specific aspects of  representa-
tions (e.g., their stability in time). The second dimension 
opposes theories that assume that consciousness depends 
on the involvement of  specific networks and structures in 
the brain (e.g., the frontal cortex) to theories that assume 
that conscious representations may occur anywhere in the 
brain. In the following section, we examine several exist-
ing proposals for such CCC, based on what is currently 
empirically known on NCC, a necessary constraint to 
anyone who wants to model human consciousness.

The Seven Samurai: Essential Characteristics 
of  CCC. While many existing proposals concerning 
the CCC are incompatible with each other, most share 
a number of  basic assumptions that roughly fall into two 
broad categories. First are “fame in the brain” propos-
als, initially pioneered by the philosopher Daniel Den-
nett, which assume that consciousness occurs whenever 
some conditions are fulfilled, such as Stability and Strength 
of  representation, which can be viewed as resulting from 
Re-entrant processing and/or from Synchrony of  processing. Es-
sentially, these proposals assume that the brain is a large 
dynamical system in which stable, attractor states come 
in and out of  existence as a result of  continuously oper-
ating global constraint satisfaction processes. The main 
functional consequence of  such states is that the infor-
mation they convey then becomes globally available for fur-
ther information processing, which in turn enables the 
brain to form interpretations of  the world that are both 
integrated and differentiated (see below for an explanation of  
these concepts). The other main proposal is the notion 
that consciousness depends on “higher-order thoughts”, 
that is, on the existence of  meta-representations that enrich 
first-order representations. 

Basic features
Our brain is a hodgepodge of  constant neural firing, 
where information is passed around countless of  times in 
fractions of  a second, but unlike Star Trek’s Commander 

Data, we do not have total access to this content. Stability 
and strength of  representation are likely to form two basic 
requirements for neural representations to be available to 
consciousness. In the case of  stability, content becomes 
conscious as soon as its activation persists over some peri-
od of  time. Representations acquire stability as a result of  
relaxation processes as they occur in dynamical systems. 
An interactive network, for instance, will tend to “settle” 
in one of  a limited number of  stable, “attractor” states. In 
the case of  strength, content becomes conscious when its 
activation passes a certain activation threshold. Strength, 
in this context, could refer to the number of  neurons in-
volved in the representation relative the to the number of  
neurons involved in competing representations, or to the 
fact that a self-sustaining coalition of  neurons has formed 
and inhibits other competing coalitions. Both concepts 
are intertwined, as one can imagine that a representation 
only acquires strength over time, and so stability would be 
a prerequisite to gain sufficient strength.

Processes, or the how of  it
How do representations become strong and stable in 
time? Two kinds of  processes have been proposed. The 
first, re-entrant or recurrent or feedback processing, is the proc-
ess by which, rather than just feeding forward through 
a set of  neurons, activation is passed back to the send-
ing neurons. Neural networks in the brain are massively 
recurrent, with “downstream” neurons connecting back 
to the “upstream” neurons from which they receive con-
nections. Recurrent networks have very different compu-
tational properties from purely feed-forward networks. In 
particular, recurrent networks have internal dynamics and 
can thus settle onto particular attractor states independ-
ently of  the input, whereas feed-forward networks only 
become active when their preferred inputs are present. It 
has been suggested that exactly this difference accounts 
for consciousness, in that feed-forward sweeps would be 
unconscious, while recurrent activation would produce 
conscious content. It is clear how this relates to stability 
and strength, as in neural networks both are typically ac-
quired through recurrent processing. A potential problem 
with this view is that we can have recurrence at any level 
which does not necessarily involve consciousness. Fur-
thermore, it does not explain the so-called “binding prob-
lem”, which refers to the fact all this information somehow 
needs to be integrated, since we experience our conscious 
content as an undivided whole. A second view on process-
ing that attempts to overcome this problem, claims that 
synchrony or gamma oscillations of  neural firing is a neces-
sary prerequisite for consciousness. It has been observed 
that when content becomes conscious, this is accompa-
nied by different parts of  the brain working in temporal 
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synchrony through high frequency oscilla-
tions (neural firings). Apart from solving 
the binding problem, neural synchrony 
has the computational consequence that it 
strengthens and selects specific signals on 
a more global level than local recurrence, 
and could explain why at some point con-
tent becomes globally available.

Consequences
When content becomes globally available, it 
means that the brain can work with it, that 
is, it becomes available to all sorts of  brain 
processes (for instance, cognitive con-
trol), as through a global workspace, which 
would consist of  long-range connections 
in the cortex. It’s important to note that 
this point of  view, and in fact any view en-
dorsing some sort of  selection threshold, 
implicitly assumes that consciousness is an 
all-or-none phenomenon, because as soon 
as you have either recurrence, synchrony, 
or global availability, consciousness is “ig-
nited”. Empirical studies, however, have so 
far remained inconclusive about whether 
consciousness is dichotomous or gradual. 
Even when it is gradual, it can be gradual 
in that it consists of  graded representation-
al strength, but also that this impression of  
a gradual consciousness it is a mere illusion 
brought about by increasing “on”-switch-
ing of  “pixels” of  information, which, when a stimulus 
is sufficiently complex (such as the real world), can create 
the impression of  graded consciousness. The main issue 
here is that from a bottom-up point of  view, content at 
some point, through any or all of  the mechanisms de-
scribed higher and depicted in Figure 1, becomes avail-
able to different processes, which is associated in some 
way with that content becoming conscious.

From a more theoretical top-down point of  view, Integrated 
Information Theory has proposed that conscious states are 
characterized by the fact that they are both highly inte-
grated and highly differentiated states. Integration refers to 
the fact that conscious states are states in which contents 
are fundamentally linked to each other and hence unified: 
One cannot perceive shape independently from color, for 
instance. Differentiation refers to the fact that conscious 
states are one among many possible states; for each con-
scious state, there is almost an infinity of  alternative pos-
sibilities that are ruled out. Thus, only systems capable of  
both integrating and of  representing a wide array of  dis

Figure 1. Three examples of  “Fame in the Brain” theories on conscious-
ness, depicting the supposed equivalents of  visual perception without (left) 
and with consciousness (right). The top panel represents theories assuming 
recurrent or re-entrant processing as the crucial feature allowing for con-
sciousness; the central panel represents theories that see synchronised oscil-
lations as a prerequisite for consciousness; while the bottom panel depicts 
theories that assume global workspace activation is what makes content 
conscious. Note that, while dissimilar, all theories share the common fea-
ture of  a clear-cut qualitative difference between unconscious and conscious 
processing.

tinct states are capable of  consciousness. Based on this 
hypothesis, one can thus analyze, from a computational 
point of  view, what kinds of  systems are capable of  such 
integrated and differentiated representation.  

Meta-representations 
Finally, a rather different idea has been proposed by the 
philosopher David Rosenthal in the form of  his “Higher-
Order Thought” theory of  consciousness, which assumes 
that at any given time, a representation is conscious to 
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the extent that one has a thought that one is conscious of  
that representation. In other words, a representation of  
some content becomes conscious when it becomes pos-
sible to think about that content. Mere “fame in the brain” 
is therefore neither sufficient nor necessary to make a rep-
resentation conscious in this perspective; what is needed 
instead is the occurrence of  
meta-representations that re-
describe in specific ways lower-
level representations. Thus, it is 
in virtue of  this re-representa-
tion that first-order content be-
comes conscious content.  

Modelling Consciousness 
in Neural nets
Computational models of  con-
sciousness are few and in be-
tween, and for good reason: 
Since phenomenal conscious-
ness (“what it is like”) cannot 
be characterized in functional 
terms, it is difficult to propose 
plausible mechanisms for it. 
Thus, most existing models have 
focused on accounting for the 
functional differences between 
computations carried out with or without consciousness. 
For instance, at the Université Libre de Bruxelles (ULB), 
we have developed connectionist models that are able to 
capture human performance in implicit learning tasks. 
Implicit learning occurs when people exhibit behavioural 
adaptation to a stimulus environment without awareness 
of  what they have learned. Natural language learning 
is often considered to involve such implicit learning, for 
we all learn to express and correct utterances without 
intending to do so, and without necessarily acquiring 
verbalisable knowledge of  grammar.  In the laboratory, 
implicit learning is explored by means of  experimental 
situations in which people are exposed to an ensemble 
of  complex stimuli and asked to process them in some 
way. For instance, people may be asked to memorize nu-
merous meaningless strings of  letters (e.g., “TXVPPS”, 
“PTVXS”, &c.). Unknown to them, all these stimuli have 
been generated based on a finite-state grammar. After 
memorization, people are then told that the strings had 
all been generated based on a set of  rules, and are now 
asked to decide whether novel strings are “grammatical” 
or not. Participants complain that they know nothing of  
a grammar, but they are told to try their best based on in-
tuition. The main result in these experiments is that peo-
ple consistently perform better than chance when classi-

fying these novel strings are grammatical or not, yet they 
find themselves unable to verbalize how they make their 
decisions, thus exhibiting a dissociation between their 
performance and their awareness of  the knowledge they 
have acquired—implicit learning.

Figure 2. Illustration of  metarepresentations in a connectionist network. 
On the left is a first-order network that can use its internal representations 
to solve a task, but has no access to these representations. On the right, this 
first order network becomes the input of  a higher-order network, which can 
access the knowledge of  the first network, and which can therefore in theory 
become conscious as the brain learns about itself, for instance what this 
first-order knowledge means for the system.

In our lab, we have mostly explored how well Elman’s 
Simple Recurrent Network (SRN) is able to capture human 
performance in such and similar situations. This type 
of  back- propagation network consists of  a layer of  in-
put units, representing perception, connected to a layer of  
hidden units, which in turn feed into a layer of  output units, 
representing action. The SRN has an additional set of  
context units, which are a copy of  the hidden units at time 
that form part of  the input at time t+1 (hence recurrent). 
Using this network, we have been able to reproduce vari-
ous empirical results in the implicit learning literature, 
showing for instance that when trained on artificial gram-
mar learning material just as human participants were, 
the network develops a rich and abstract set of  internal 
representations that actually represent the structure of  
the grammar used to generate the strings. However, and 
this is a crucial point, the network can use this knowledge, 
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but it does not know that is possesses it. The sophisticat-
ed representations that the network has developed over 
training constitute knowledge that is in the network, but 
not knowledge for the network (Figure 2, on the left). Just 
like human participants, the network is not aware that it 
has learned anything, nor does it know the structure of  
the knowledge that it has acquired. Hence the question 
that motivates our current work: What mechanisms are 
required to make it possible for the network to “know that 
it knows”?

Plug a network into another
One simple possibility that we have recently explored is 
to train a second network to observe the internal states 
of  the first (Figure 2, on the right). In this way, knowl-
edge in the first-order network becomes knowledge for the 
second-order network. This second network can then be 
trained to perform different tasks, such as predicting the 
first network’s state, or evaluating the extent to which the 
first network has learned its task well. In a recent study, 
we have shown that such second-order networks can be 
trained to wager (place bets) on the first-order network’s 
performance in a cognitive task. Interestingly, wagering 
can be taken as a measure of  awareness, as follows: If  the 
decisions you take are conscious, informed decisions, you 
will also know when you are correct and when you are 
not. For instance, to follow up on the artificial grammar 
learning example described above, if  you have conscious 
knowledge about the rules of  the grammar, then you will 
know when your classification decisions are correct and 
when they are not. Thus, when asked to bet on your own 
decisions, you will place correct, advantageous bets. If, on 
the other hand, you have no idea when you are correct 
and when you are wrong (that is, when your knowledge 
is unconscious), your wagering will be at chance even 
while your classification performance may be better than 
chance. Our modelling work captures these patterns of  
associations and dissociations very nicely, and interest-
ingly suggests that consciousness may be something we 
learn rather than something we have. This leads to the 
hypothesis that the brain is continuously learning about 
its own information processing, thus developing models 
of  its own workings, and that this self  re-description is 
a crucial computational principle that differentiates con-
scious from unconscious processing. Proteus is not around 
the corner, but a step at a time may get us there. ø

Further reading:
• Several questions regarding thought in computers, including on con-Several questions regarding thought in computers, including on con-
sciousness and thought thought, are addressed in detail on Mapping 
Great Debates: Can Computers Think?  http://www.macrovu.
com/CCTGeneralInfo.html
• For important papers on any issues regarding consciousness, visitFor important papers on any issues regarding consciousness, visit 
David Chalmers’ monumental Online Papers on Consciousness  
http://consc.net/online
• Two recent papers regarding modelling of consciousness: Maia, T.Two recent papers regarding modelling of  consciousness: Maia, T. 
V. & Cleeremans, A. Consciousness: converging insights from con-
nectionist modelling and neuroscience. Trends in Cognitive Sciences, 
2005, vol. 9, pp. 397-404; and: Cleeremans, A., Timmermans, 
B., & Pasquali, A. Consciousness and metarepresentation: a com-
putational sketch. Neural Networks, 2007, vol. 20, pp. 1032-9.
• Watch out for Wilken, P., Bayne, T., & Cleeremans, A. (Eds.).Watch out for Wilken, P., Bayne, T., & Cleeremans, A. (Eds.). 
The Oxford Companion to Consciousness. Oxford University Press. 
Currently in press, expected early 2009.


