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a b s t r a c t

Subjective measures of awareness rest on the assumption that conscious knowledge is
knowledge that participants know they possess. Post-Decision Wagering (PDW), recently
proposed as a new measure of awareness, requires participants to place a high or a low
wager on their decisions. Whereas advantageous wagering indicates awareness of the
knowledge on which the decisions are based, cases in which participants fail to optimize
their wagers suggest performance without awareness. Here, we hypothesize that wagering
and other subjective measures of awareness reflect metacognitive capacities subtended by
self-developed metarepresentations that inform an agent about its own internal states. To
support this idea, we present three simulations in which neural networks learn to wager on
their own responses. The simulations illustrate essential properties that are required for
such metarepresentations to influence PDW as a measure of awareness. Results demon-
strate a good fit to human data. We discuss the implications of this modeling work for
our understanding of consciousness and its measures.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

Awareness can be assessed by exploring patterns of
association and dissociation between objective (i.e., recog-
nition or discrimination performance) and subjective (i.e.,
verbal reports and confidence judgments) measures (e.g.,
Merikle, 1992). Thus, given certain assumptions about sen-
sitivity and exhaustiveness, one can conclude that perfor-
mance on some task of interest (the objective measure) is
guided by unconscious knowledge whenever participants
claim to be guessing (the subjective measure) while never-
theless performing better than chance (i.e., the ‘‘guessing
criterion”, e.g., Dienes, Altmann, Kwan, & Goode, 1995).
Conversely, whenever we observe a correlation between
subjective and objective measures, we can conclude that

task performance is at least to some degree subtended by
conscious knowledge (i.e., the ‘‘zero correlation criterion”,
e.g., Dienes et al., 1995).

This reasoning, while it remains somewhat controver-
sial (e.g., Holender & Duscherer, 2004; Tunney & Shanks,
2003), subtends all subjective measures of awareness. Its
central assumption is that when one is conscious of some
piece of information, one is also conscious that one holds
this information. Unconscious information can thus be ta-
ken to be knowledge about which we have no metaknowl-
edge. There is, however, continuing debate about the extent
to which available measures of such metaknowledge are
sufficiently sensitive and exhaustive (e.g., Dienes & Seth,
2009; Sandberg, Timmermans, Overgaard, & Cleeremans,
2010).

In this context, Persaud et al. (e.g., Persaud & McLeod,
2007; Persaud, McLeod, & Cowey, 2007) recently reintro-
duced (i.e., after Ruffman, Rustin, Garnham, & Parkin,
2001) a measure of awareness that aims to be as exhaustive
as possible: Post-Decision Wagering (PDW). Through PDW,
participants continuously evaluate their performance by
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wagering on each decision in tasks such as visual stimulus
identification under blindsight (e.g., Stoerig, Zontanou, &
Cowey, 2002), string classification in Artificial Grammar
Learning (AGL) (e.g., Reber, 1967), or deck selection in the
Iowa Gambling task (e.g., Bechara, Damasio, Damasio, &
Anderson, 1994). Like other subjective measures, PDW re-
lies on the following logic: Given that participants attempt
to maximize their earnings, if participants are aware of the
knowledge upon which they make their decisions, then
they should wager advantageously, betting high whenever
they make a correct decision, and low for errors. Con-
versely, when they fail to place advantageous wagers, that
is, when wagering is independent from above-chance per-
formance, one may conclude that the knowledge that
drives performance is unconscious (e.g., Seth, 2008). One
purported advantage of PDW over other subjective mea-
sures such as confidence judgments is that it is more intu-
itive and therefore less fraught with the measurement
errors possibly associated with the latter (e.g., Koch & Pre-
uschoff, 2007). In other words, PDW is assumed to provide a
better, more intuitive and also more easily quantifiable
assessment of metaknowledge. This is why Persaud et al.
have described PDW as an ‘‘objective” measure of aware-
ness (but see Dienes & Seth, 2009, for a critical evaluation).

In this paper, we ask what computational principles are
required for the occurrence of metaknowledge as mea-
sured by PDW and germane subjective tests of awareness
that likewise depend on metacognitive access. To explore
this issue, we propose a series of three simulations that
capture the results obtained by Persaud et al. in the three
experimental paradigms they examined (blindsight, Artifi-
cial Grammar Learning, and the Iowa Gambling task). Each
simulation is based on the following set of central
assumptions.

Our first core assumption (see also Cleeremans, 2008;
Cleeremans, Timmermans, & Pasquali, 2007) is that evalu-
ating one’s own performance, as involved in subjective
measures of awareness, requires that the first-order repre-
sentations that are responsible for performance be ac-
cessed in a manner that is independent from their
expression in behavior. To see this point, consider any
neural network that has learned a particular task,—say, a
Simple Recurrent Network (SRN, see Elman, 1990) predict-
ing the next element of a sequence. Over training, such
networks learn richly structured internal representations
of their domain, as demonstrated for instance by Cleere-
mans, Servan-Schreiber, and McClelland (1989), who
showed that the internal representations learned by an
SRN trained to predict the next element of sequences gen-
erated by a finite-state automaton (FSA) reflect the ab-
stract structure of the FSA. The network, however, and
this is the crucial point we wish to make here, does not
know, in any sense, that it possesses this knowledge. Its
sensitivity to sequential structure can only be expressed
in the context of the prediction task it was trained to per-
form. To enable such a network to ‘‘know that it knows”, as
would be the case for knowledge held consciously by a hu-
man agent, the knowledge that is ‘‘in the system” must
therefore become knowledge ‘‘for the system” (e.g., Clark
& Karmiloff-Smith, 1993; Karmiloff-Smith, 1992; Mandler,
2004).

However, as pointed out by Dienes and Perner (1996),
representing knowledge into metarepresentations (i.e.,
into content-explicit representations) is not sufficient.
One must also represent oneself as being in possession of
that content (attitude-explicit representations). Our second
core assumption is thus that such attitude-explicit repre-
sentation requires access to the relevant first-order knowl-
edge in a manner that is independent from the causal chain
in which it is embedded, such that not only the content but
also the accuracy of the knowledge be represented.

To achieve such a mechanism, we assume that a higher-
order network automatically and continuously monitors
the performance of a first-order network, in such a way
that it is able: (a) to discriminate and classify information
contained in the first-order network in an independent
manner (i.e., independently of the first-order task), and
(b) to provide access to this information (i.e., the informa-
tion must indicate if the first-order network can be trusted
or not) towards any secondary task requiring knowledge
about the first-order internal states or performance. With-
out claiming that this mechanism would present sufficient
or even necessary conditions for awareness in general, we
intend to show that it can stand as a basic principle of
metacognition, and therefore of subjectivity.

2. Simulations

We implemented three networks that simulate the per-
formance of Persaud et al.’s participants in a blindsight sit-
uation, in the AGL task, and in the Iowa Gambling task. All
simulations, rather than merely fitting Persaud et al.’s data,
were designed so as to illustrate the main theoretical
assumptions discussed earlier while modeling additional
principles based on specific features of each of Persaud
et al.’s experiments (all of which are briefly discussed in
each simulation’s results section).

2.1. Architectures

All three metacognitive networks each consist of two
interconnected networks: (a) a three-layers backpropaga-
tion feedforward first-order network that performs the
main task (i.e., stimulus discrimination, letter string classi-
fication, or deck selection, respectively), and (b) a second-
order network that continuously evaluates the performance
of the first-order network and that consists of a hidden unit
layer and of two output nodes representing high or low wa-
gers. In every first-order and second-order network of all
simulations, we used a winner-take-all algorithm (auto-
matic selection of the most activated units) in the output
(all output activations ranging from 0.0 to 1.0) so as to avoid
having to set an arbitrary goodness-of-fit criterion on the
output error in order to obtain the networks’ responses. Be-
cause of different task requirements, the specific network
architectures associated with each of the three paradigms
differ substantially from each other in terms of: (a) the nat-
ure of their higher-order representations, and (b) the imple-
mentation of ‘‘low” and ‘‘high” awareness conditions (a
complete description of network architecture, parameters,
and patterns is available in Supplementary material).
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The fairly similar blindsight and AGL architectures
(Fig. 1) have in common that the first-order network is
an autoassociator, complemented by a winner-take-all
mechanism on the output. The autoassociator has to solve
the task problem through a re-representation of the input,
that is, it has to create a bimodal distribution of inputs,
representing either the presence versus absence of a stim-
ulus (Simulation 1, in which the winner-take-all algorithm
selects the most activated output unit), or grammatical
versus ungrammatical strings (Simulation 2, in which the
winner-take-all algorithm selects the most activated unit
for each column, thus representing the most activated let-
ter for each position within a string). This reflects partici-
pants’ behavioral performance and is what in principle
any non-conscious learning mechanism can do: create a
simple distribution representing the environment.

The second-order network’s hidden units consist of a
comparator matrix, representing the match between in-
puts and outputs of the first-order network’s autoassocia-
tor, which is effectively the accuracy of the first-order
network’s internal knowledge. The crucial role of such
comparators for the emergence of conscious percepts has
been suggested previously (e.g., Frith, Blakemore, & Wol-
pert, 2000; Gallagher, 2004; Mandler, 2004; Synofzik, Vos-
gerau, & Newen, 2008), in that they merge internal and
external states into unique representations (e.g., Pacherie,
2008; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996; Sperry,
1950; Wolpert & Kawato, 1998). In our networks, each of
these comparator units compute the difference between
each corresponding pair of first-order input and output
units of the autoassociator. Thus they represent the first-
order network’s error not as a training signal but as a dis-
tributed activation pattern, which the second-order net-
work can then access by using a weighted sum of these
signed errors to decide on whether to place a high or a
low wager. Thus, the second-order network is taught to

wager high when the first-order network’s response is cor-
rect (i.e., the stimulus is present/regular and is accepted as
such by the winner-take-all, or the stimulus is absent/
irregular and is rejected) and to wager low when the
first-order network’s response is incorrect (i.e., the stimu-
lus is present/regular but is rejected, or the stimulus is ab-
sent/irregular but is accepted). This effectively comes
down to setting a decision criterion on the first-order net-
work’s error distribution. Crucially, and in contrast with
the Iowa Gambling task’s simulation: (a) development of
the comparison patterns is automatic and unsupervised
(that is, not driven by feedback), and (b) the second-order
network’s access to these patterns for wagering is learned
in a pre-training phase, independent of specific first-order
patterns or training and testing tasks. These two properties
allow for the second-order network to access the relevant
first-order knowledge in a manner that is independent
from the causal chain in which that knowledge is embed-
ded. Both the unsupervised emergence of the comparison
patterns as well as the pre-training of the wagering skill
are essential to the second-order network, for they guaran-
tee that the second-order network does not simply learn to
match specific first-order inputs and outputs to a high or a
low wager. Instead, it learns here to discriminate between
cases when the metacognitive network knows that it does
or does not know (high wager) and when it does not know
if it does or does not know (low wager). Just as people do
not have to inspect their behavior in order to decide
whether they will place a bet on or be confident about
something, they can just do it by judging the accuracy of
their internal knowledge, independently of the task to
which that judgment pertains.

The Iowa Gambling task, as modified by Persaud et al., is
a fundamentally different paradigm, hence the architec-
ture of the Iowa Gambling task’s simulation involves nei-
ther an autoassociator nor a comparator. Instead, the
first-order network performs a supervised predictive task,
and the second-order network’s input consists of the acti-
vation pattern of the first-order network’s hidden units.
Unlike the other two simulations, the resulting second-or-
der network’s hidden unit representations are therefore
neither automatic nor independent from the first-order
network, but are instead learned in a manner that specifi-
cally depends on the first-order internal knowledge and
task (Fig. 2). Indeed, learning occurs this time concurrently
in every connection of both networks during the task, and
the second-order network’s wagering performance is mod-
ulated in direct correlation with first-order network’s con-
tent and accuracy. In this simulation, the first-order
network is directly reinforced as a function of decks’ out-
comes, whereas the second-order network learns to wager
high when the outcome of the card selected by the first-or-
der network is a reward, and to wager low when the out-
come is a penalty (each card deck having different
probabilities of presenting both types of outcomes).

2.2. Simulation 1 – blindsight

2.2.1. Experiment
In their blindsight experiment, Persaud et al. showed

that GY (a patient who, under specific circumstances,

Fig. 1. Network architecture for blindsight and AGL simulations. The
network consists of a first-order feedforward backpropagation autoasso-
ciator (the winner-take-all mechanism on the output is not represented),
of which the input and output units are connected through fixed weight
to a second-order comparator, which in turn feeds forward into two
wagering units.
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makes visual discriminations in the absence of visual
awareness), when presented with subthreshold stimuli in
his blind field, displayed above chance localization perfor-
mance but failed to maximize earnings through wagering,
suggesting that he was not always aware of the knowledge
involved in his decisions for stimulus localization. How-
ever, for suprathreshold stimuli (both in normal and blind
fields), GY maximized performance as well as earnings.

2.2.2. Simulation
We simulated these results by pre-training 15 net-

works to discriminate amongst arbitrary stimulus posi-
tions and to simultaneously place wagers on their own
performance. Distinction between suprathreshold and sub-
threshold blindsight vision was introduced during a subse-
quent testing phase, in which the networks classified the
patterns they had previously been presented with (supra-
threshold), as well as degraded versions of these patterns
in which stimulus-to-noise ratio was manipulated by
increasing the noise level (subthreshold). As blindsight is
commonly associated with lesions in the brain and in par-
ticular in V1, we chose to modulate the stimulus-to-noise
ratio in the input of a fully connected metacognitive net-
work, rather than simply removing the connections be-
tween the first-order network and the second-order
network since this would obviously result in a dissociation
(an additional way of simulating blindness is reported in
Supplementary material).

2.2.3. Results and discussion
As shown in Table 1, the simulations closely capture

experimental results. Discrimination performance, as sim-
ulated by the first-order network, is well above chance
both under subthreshold and suprathreshold conditions
(78.5% and 80.0% correct, respectively). However, networks
tested in the subthreshold condition fail to wager advanta-
geously on their correct and incorrect discriminations and
instead wager at chance level, with only 48.5% of all trials
(29 + 19.5%) being followed by an advantageous wager.
This is not the case under suprathreshold conditions,
where 66% of all trials are accompanied by advantageous
wagers (50.5 + 15.5%).

The blindsight simulation illustrates the main principle
of higher-order representations that are formed outside of

the first-order network’s causal chain by means of a com-
parator with an unsupervised learning mechanism. In
addition to the first-order classification boundary, this
comparator puts a second boundary on the distributed rep-
resentations of the first-order error. However, the wager-
ing capacity in this first simulation, while being causally
independent from specific first-order patterns, is still con-
nected to the first-order task of pattern recognition and
therefore is still dependent in terms of content, because
the network learns how to wager at the same time that it
learns to recognize patterns. Indeed, when we learn to per-
ceive the world, we learn to trust what we see (supervised
pre-training of wagering), after which we are able to trust
our own judgment (wagering during pattern testing). Nev-
ertheless, having learned what percepts we can trust, we
do not need to re-learn which of our judgments we can
trust with every new perceptual input or task. The next
simulation addresses this issue.

2.3. Simulation 2 – Artificial Grammar Learning Task

2.3.1. Experiment
In the AGL experiment, Persaud et al. show that, follow-

ing incidental exposure to strings of letters (i.e., memorize
‘‘TSXVPP”, ‘‘PVPXVT”, etc.) produced by an artificial gram-
mar, participants perform above chance on a subsequent
and unexpected test asking them to discriminate between
novel grammatical and non-grammatical strings while fail-
ing to maximize their earnings though wagering (implicit
condition). This result is in line with typical implicit learn-
ing results (e.g., Dienes et al., 1995), suggesting that people
can learn about the structure of the material while remain-
ing unable to verbalize their knowledge. When partici-
pants were subsequently made aware of the grammar
rules by being told what they were, however, they started
to wager advantageously (explicit condition). Discrimina-
tion performance also improved but it was maintained,
for comparison purposes, at the same level as under inci-
dental conditions by reducing time of exposure to the
strings during the test phase.

2.3.2. Simulation
We simulated these results by training two sets of 15

networks to classify artificial grammar strings. The meta-
cognitive networks were similar to those used in the blind-
sight simulation, with the exception that we implemented
the distinction between low and high awareness condi-
tions by manipulating the first-order network’s training
phase length (short and long training phases correspond-
ing to implicit and explicit conditions, respectively). It is
obviously impossible to tell this network what the rules
of the grammar are in a symbolic, abstract manner. How-
ever, for the purpose of the simulation, we only needed
to induce the same improvements as in the experimental
situation. As both performance and wagering were en-
hanced in the explicit condition (indeed, Persaud et al. di-
rectly told participants how to improve their performance),
we simply let the first-order network learn for a longer
period of time to obtain the same effect. We did not simu-
late the manipulation of string exposure time that would

Fig. 2. Network architecture for the Iowa Gambling task’s simulation. The
network consists of a first-order feedforward backpropagator, of which
the hidden units feedforward into a set of second-order hidden units,
which in turn feed forward into two wagering units.
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have maintained performance at a level comparable to the
implicit condition.

Crucial to this simulation, we wanted a second-order
network that was able to wager independently from spe-
cific first-order material, and have it generalize its knowl-
edge to novel material (recall that in the blindsight
simulation, all test patterns had been presented previ-
ously). To achieve this, both networks were first subjected
to pre-training on a set of random patterns, allowing the
second-order network to learn how to wager indepen-
dently of any first-order task and content. Half of these
random patterns were accompanied by learning in the
first-order network, while the other half were not. In both
cases, the second-order network had to wager high when
first-order input and output matched, and low when they
did not, thus learning to establish a decision criterion
based on the first-order network’s accuracy. Following
pre-training, all first-order network’s connections were re-
set to initial conditions, whereas second-order network’s
weights were kept as was until the end of the simulation.
(see Supplementary material for a detailed account).

2.3.3. Results and discussion
With this new setup, our simulation results again fit

behavioral data (Table 2). Networks in the implicit condi-
tion performed above chance (71.8% correct), but failed
to wager advantageously (56% of all trials). The explicit
condition networks were not only better at the discrimina-

tion task (98% correct) – as a longer exposure period would
predict – but also in placing advantageous wagers above
chance (65% of all trials).

In addition to the principle illustrated in the blindsight
simulation (higher-order representations formed outside
of the first-order causal chain), the AGL simulation demon-
strates that a higher-order network can generalize its
wagering ability to new materials and contexts. Indeed,
people can wager on their performance on any given task,
without having to learn each time anew how to do so.
In the AGL simulation, the second-order knowledge is
generalizable thanks to the specific choice made for the
pre-training task, being itself as general as possible: the
indiscriminate learning of random patterns. From a devel-
opmental perspective, this pre-training simulates the
effect of having the second-order network trained on many
different tasks in order for the higher-order boundary to be
adjusted independently from any first-order specific con-
tent. As a consequence, the metarepresentations generated
by the new task (the AGL task) fit within the larger area of
expertise of the second-order network. Thus the AGL
simulation illustrates the principle of independency not
only in terms of attitude, but also in terms of content. Fi-
nally the last simulation, because of differences in Persaud
et al.’s experimental setup, serves to illustrate another kind
of metarepresentations that might develop in our brain,
and that are causally dependent on the first-order
representations.

Table 1
Results of the blindsight simulation.

Localization with Experiment Simulation

Subthreshold stimuli Correct Incorrect Total Correct Incorrect Total

High wager 12 6 18 29 2 31
Low wager 62 20 82 49.5 19.5 69
Total 74 26 100 78.5 21.5 100
Suprathreshold stimuli Correct Incorrect Total Correct Incorrect Total

High wager 72 2 74 50.5 4.5 55
Low wager 18 8 26 29.5 15.5 45
Total 90 10 100 80 20 100

Percentages of localizations and corresponding wagers in low (subthreshold) and high (suprathreshold) consciousness conditions in Persaud et al.’s
experiment (reproduced with permission) and in our simulation. Advantageous wagers are underlined.

Table 2
Results of the AGL simulation.

Discrimination Experiment Simulation

Implicit Correct Incorrect Total Correct Incorrect Total

High wager 36 6.5 42.5 36.5 8.5 45
Low wager 44.5 13 57.5 35.5 19.5 55
Total 80.5 19.5 100 72 28 100

Explicit Correct Incorrect Total Correct Incorrect Total

High wager 53.2 7.3 60.5 63.5 0.5 64
Low wager 20.1 19.4 39.5 34.5 1.5 36
Total 73.3 26.7 100 98 2 100

Percentages of discriminations and corresponding wagers by the network in low (implicit condition) and high (explicit condition) consciousness conditions
in Persaud et al.’s experiment (reproduced with permission; explicit condition data are extrapolated from Persaud et al. Fig. S2) and in our simulation.
Advantageous wagers are underlined. (A detailed breakdown of string classifications is listed in the Supplementary material).
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2.4. Simulation 3 – Iowa Gambling task

2.4.1. Experiment
In Persaud et al.’s modified version of the Iowa Gambling

task, participants select, on each trial, one of four decks of
cards, each with different pay-offs (e.g., some decks offer
relatively low rewards but are ultimately advantageous,
whereas others offer much larger rewards but also larger
penalties, proving disadvantageous over the long run). After
deck selection, but before turning over the card (revealing
how much was won or lost), participants wager on whether
the card will be winning or losing. Participants typically
manage to improve deck selection well before they start
wagering advantageously, suggesting implicit knowledge.
However when participants are made more aware of their
strategy to determine deck relative pay-offs by being asked
specific questions regarding their strategy (i.e., ‘‘What
would you expect your average winning amount to be by
picking 10 cards from deck 1?”) (e.g., Maia & McClelland,
2004), wagering follows performance more closely
(Fig. 3b). This experiment differs from the others in two ba-
sic ways, necessitating a different simulation approach.
First, the Iowa Gambling task requires participants to ini-
tially explore the material before being able to create any
representation about the decks’ yields. The resulting meta-
representations are thus necessarily dependent on this
exploration phase. Second, participants receive feedback
on each trial about the quality of their wagering, as the turn-
ing of the card immediately reveals whether and how much
is won. As a consequence, participants can use this feedback
to unconsciously optimize not only their deck selection, but

also their wagering. This does not rule out the fact that par-
ticipants effectively become aware of relative pay-offs along
the experiment but this makes wagering in the Iowa Gam-
bling task less suitable as a measure of awareness, since
advantageous wagering could in principle emerge in the ab-
sence of awareness. Additionally, the high awareness condi-
tion consisted in asking participants specific questions
regarding strategy every 10th trial after the 20th. This, in
contrast to the AGL experiment, affected their wagering
but not their task performance. This suggests that in this sit-
uation, manipulating awareness only modulates processing
in the second-order network, leaving the first-order net-
work’s processing intact.

2.4.2. Simulation
Two sets of 15 networks learned to perform the deck

selection task while wagering on the gain obtained on each
decision. These networks were modified in three ways to
reflect the task differences described above. First, the
first-order network could not be an autoassociator since
the desired states were not available as inputs as in the
previous simulations. Instead it had to select one out of
four card packs at first and received feedback about the re-
sult of that selection (win or loss) only after the selection
had been made. Second, because the first-order network
wasn’t an autoassociator, the second-order network meta-
representations could not rely on a comparator, but in-
stead consisted of a hidden layer directly connected to
the first-order network’s hidden units, and feeding for-
ward into the (wagering) outputs (Fig. 2). Finally, to mod-
ulate only wagering performance, we implemented the

Fig. 3. Results for the Iowa Gambling task’s simulation. Network performance is plotted across time (epochs) for: (c) Low Consciousness, and (d) High
Consciousness conditions. Persaud et al.’s results are reproduced (with permission) for comparison purpose (a and b for Low and High Consciousness
conditions respectively).

A. Pasquali et al. / Cognition 117 (2010) 182–190 187



distinction between ‘‘Low Consciousness” and ‘‘High Con-
sciousness” conditions by setting the second-order net-
work’s learning rate low or high, respectively, without
affecting the first-order network.

2.4.3. Results and discussion
Fig. 3 displays the performance of both networks over

time. Just as for the experimental data, wagering perfor-
mance lags advantageous card deck selection in the ‘‘Low
Consciousness” condition. By contrast, in the ‘‘High Con-
sciousness” conditions, in which we increased the efficacy
with which the second-order network could make use of
the first-order network’s hidden unit representations,
wagering closely follows card deck selection.

The simulation of the Iowa Gambling task demonstrates
a different way of creating higher-order representations
through supervised, rather than unsupervised, learning.
The resulting metarepresentations are this time embedded
within the causal chain of the first-order network. There-
fore, the second-order network lacks independency of con-
tent, as was the case in the blindsight simulation, since both
the first-order and the second-order knowledge lie within
the exact same domain. Crucially, in addition to this, as both
networks are causally dependent, metaknowledge is pre-
vented from becoming attitude-explicit (i.e., accuracy is
not represented). As a consequence, this knowledge needs
not to be conscious, since it remains ‘‘in” the system without
being available ‘‘for” the system. In the general discussion,
we elaborate on how the two types of metarepresentations
(with or without attitude-explicitness) might be related.

3. Discussion

The simulations demonstrate three ways of modeling
the pattern of associations and dissociations between
performance and wagering as reported experimentally as
distinctions between performance with and without
awareness by Persaud et al. (2007). Furthermore, they sug-
gest that a metacognitive network can be trained to evalu-
ate its own performance through the development of
metarepresentations that redescribe relevant first-order
representations to the network itself. Though we do not
claim that metacognitive networks are conscious in any
sense, we would like to discuss three fundamental issues
on which we believe these simulations shed some light.

3.1. The nature of metacognition

First, the basic assumption that underlies our modeling
work is that metacognition, as probed in this context by
wagering ability, requires higher-order representations.
Here we suggest that such representational redescription
emerges when a system is allowed to observe its own inter-
nal states. This makes it possible for task-related knowl-
edge not merely to drive performance in the system, but,
crucially, to become available as a further object of repre-
sentation for the system (e.g., Clark & Karmiloff-Smith,
1993; Karmiloff-Smith, 1992; Mandler, 2004). We surmise
that this mechanism forms the core of the Higher-Order
Thought Theory of Consciousness (e.g., Rosenthal, 1997),

which takes it that one is conscious of some content when
one is conscious that one knows this content (i.e., when one
is conscious of possessing this content). However, we sug-
gest that higher-order representations: (1) do not necessar-
ily provide any conscious access, as their accrual may only
render the first-order state content-, but not attitude-
explicit, notably when there is no causal independence
between first-order and higher order states (the Iowa
Gambling task simulation); and (2) can allow the transfer
of knowledge from a second-order task to another, notably
when they are causally independent from the specific first-
order knowledge, (as it is the case in the AGL simulation).
Furthermore, even though we did not explore this in the
current article, we assume that: (1) metarepresentations
allow, as far as the current task requires it, the control of
lower-order processes through top-down interactions
(hence affecting the conscious states themselves), and that
(2) simple second-order representations are by nature
unconscious unless further higher-order representations
are recursively built upon them.

Despite its apparent similarity to signal detection ac-
counts of metacognition (e.g., Scott & Dienes, 2008), the
here presented notion of knowledge becoming available
for the system by re-representation in a higher-order net-
work differs from other such signal detection based models
in a crucial way. The latter typically make the second-order
distinction between confidence and guessing (high and low
wagers) on the very signal that is used for first-order classi-
fication, by setting two boundaries on the signal: one
boundary that accounts for the first-order classification,
and a second boundary (on either side of the first-order
boundary) that distinguishes between guessing (between
the first-order and second-order boundary), and confidence
(on the far side of the second-order boundaries). In such an
account, confidence or high wagers depend essentially on
signal strength. However, in our current model (specifically
the first two simulations), in which the second-order net-
work’s representations lie outside of the first-order causal
chain, the second-order classification does not depend on
the same signal as the first-order task. Instead of wagering
high or low based on signal strength, the second-order net-
work re-represents the first-order error, thus basing itself
more on a consequence of signal coherence. Therefore, be-
fore it can wager, the second-order network, like the first-
order network, has to learn how to make a single-boundary
classification based on this second-order representation
(the distributed error representation). Such a classification
means that the second-order network has conceptually
learned to judge the first-order networks’ accuracy, inde-
pendently of the first-order task.

This difference between our model and the more stan-
dard Signal Detection Theory account is substantial, for it
impinges on whether one considers that Type I and Type
II performance, that is, first-order decisions and second-or-
der judgments about these decisions, entertain hierarchi-
cal or parallel relationships with each other. This issue is
currently being debated, with some authors defending a
dual-route model (Dehaene & Charles, 2010) and others
(Lau, 2010) defending hierarchical models. Our simulations
are suggestive that the former may be more fruitful in that
they afford additional flexibility and generality.
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3.2. Learning to be conscious

Second, our simulations assume that metarepresenta-
tions are, just like their corresponding first-order represen-
tations, learned based on experience. However, this is
accomplished in two fundamentally different ways in the
simulations. The first two models use second-order com-
parators, which form metarepresentations of the difference
between on the one hand the current internal state or pre-
diction of a first-order network, and on the other hand the
effective external state corresponding to the input (or tar-
get) it received. As suggested before, such comparators
may play a crucial role in consciousness (e.g., Frith et al.,
2000; Gallagher, 2004; Mandler, 2004; Pacherie, 2008;
Rizzolatti et al., 1996; Sperry, 1950; Synofzik et al., 2008;
Wolpert & Kawato, 1998), and particularly in the sense of
enabling agency, as they inform an agent about the ade-
quacy of its own internal states. In these simulations, pat-
tern comparison and the resulting metarepresentations
emerge through a non-supervised process and are hence
not learned in the classic sense through feedback. How-
ever, the way in which such specific metarepresentations
produce a high or a low wager is learned in a supervised,
feedback-driven way, independently from the pattern-spe-
cific comparisons (that occur beforehand). Conversely, in
the third simulation, emergence of metarepresentations
occurs through supervised reinforcement between two
tasks of interest. This second type of metarepresentations
lacks the causal independence that would be necessary
for a system to know that it possesses internal knowledge.

The fact that our comparators do not learn during the
task does not imply that at one point one stops to ‘‘learn
to be conscious”. What it means is that, rather than sudden
jumps or shifts in what content becomes conscious, such as
a newborn might have, learning to be conscious for adults
would involve continuous but infinitesimal adjustments
with every novel worldly experience, eventually approach-
ing an asymptote. In these simulations we artificially intro-
duced such an early asymptote by freezing the second-order
network’s learning, thus providing a snapshot of a system
learning to be conscious – for it is obvious that none of the
networks here are conscious. What the simulations do sug-
gest is that ‘‘learning to be conscious” could evolve from a
more supervised learning-based criterion setting, to a more
gradual, unsupervised adaptation. The causally dependent
metarepresentations exemplified in the third simulation
might thus represent a way in which such early criterion
setting occurs (see also Cleeremans et al., 2007). Though it
lies beyond the scope of this paper, we consider it possible,
and in fact most probable, that the use of first-order knowl-
edge in different feedback-driven second-order tasks (as
exemplified in the third simulation) may eventually lead
to the accrual of metaknowledge that progressively be-
comes independent of specific first-order tasks, and may
thus serve as a comparator that allows the brain to immedi-
ately evaluate the accuracy of its own internal signals.

3.3. Objective and subjective awareness

Third, our simulations speak to the distinction between
objective and subjective measures of consciousness. The

literature on the differences between conscious and
unconscious processing is characterized by continuing de-
bates about the proper methodology through which to as-
sess awareness (e.g., Butler & Berry, 2001; Holender,
1986; Merikle & Reingold, 1991; Shanks & StJohn, 1994)
but that have tended to ignore the fundamental point that
objective and subjective measures concern at first differ-
ent kinds of knowledge (e.g., Fu, Fu, & Dienes, 2008):
Knowledge about the world (‘‘worldly discrimination”)
(e.g., Lau, 2007) in the case of objective measures, and
knowledge about one’s own mental states (‘‘mental sate
discrimination”) in the case of subjective measures. Our
simulations provide a mechanism that instantiates this
distinction, here not only in terms of content but also in
terms of causal independency between different levels of
representation: representation of the task (or world) and
criterion setting.

In conclusion, our simulations are broadly supportive
of the provocative idea that consciousness results from
the continuous operation of unconscious learning and
plasticity mechanisms that make it possible for a system
to redescribe its own activity to itself—a thesis that we
have dubbed ‘‘the radical plasticity thesis” (Cleeremans,
2008). Thus, the brain not only learns about the world,
but also about its own representations of it, so develop-
ing, through experience, metarepresentations that inform
it about the geography of its own internal states. This in
turn makes it possible for an agent to qualify the manner,
or the mental attitude, in which first-order knowledge is
held: Is this something that I fear, that I hope, that I re-
gret, etc.? Such sensitivity to the qualities of one’s own
internal states as well as their relationships to other
internal states forms the basis of subjectivity and, we
claim, is constitutive of what it means for an agent to
be conscious.
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